Chemical composition, antimycobacterial and anti-inflammatory activities of iridoids and triterpene from Psychotria suterella (Rubiaceae)

Articles

Abstract
Pharmacognosy Magazine,2021,17,74,355-359.
Published:July 2021
Type:Original Article
Authors:
Author(s) affiliations:

Almir Ribeiro De Carvalho Junior1, Rafaela Oliveira Ferreira2, Michel de Souza Passos3, Milena Gonçalves Curcino Vieira4, Lorena de Lima Glória das Virgens5, Sanderson Dias Calixto5, Thatiana Lopes Biá Ventura6, Elena Lassounskaia5, Mario Geraldo de Carvalho7, Raimundo Braz-Filho8, Ivo José Curcino Vieira3
1 Instituto Federal de Santa Catarina, Câmpus Criciúma, Criciúma, SC, Brazil
2 Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brazil
3 Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Macaé, Brazil
4 Instituto Federal Fluminense, Câmpus Centro, Campos dos Goytacazes, Macaé, Brazil
5 Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Macaé, Brazil
6 Laboratório de Produtos Bioativos, Curso de Farmácia, Universidade Federal do Rio de Janeiro, Macaé, Brazil
7 Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
8 Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Macaé; Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Abstract:

Background: Psychotria species are known for their medicinal properties and psychoactive activities. Extracts of Psychotria suterella showed anti-tuberculosis (TB) activity; however, the substances related to this activity are unknown. Objectives: The objective was to study on the chemical constituents of the leaves of plant and evaluate the anti-TB and anti-inflammatory activity. Materials and Methods: Solvent extraction, partition, and column chromatography were used to separate the compounds. The structures of these compounds were determined by extensive one dimensional-and two dimensional-Nuclear Magnetic Resonance, infrared and mass spectrometry spectroscopic analyses. Some compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis and their ability to inhibit nitric oxide (NO) production by lipopolysaccharide-stimulated macrophages. Results: This study led to the isolation and characterization of a new iridoid, named epi-geniposidic acid (1), together with nine known compounds: geniposidic acid (2), 3-O-acethyloleanolic acid (3), pomolic acid (4), spinolic acid (5), maslinic acid (6), tormentic acid (7), methyl oleanolate (8), lyalosidic acid (9), and strictosidinic acid (10). Triterpene 3-O-acethyloleanolic acid (3) was found to display antimycobacterial activity against M. tuberculosis H37Rv strain and hypervirulent strain (minimum inhibitory concentration 6.7 ± 0.1 and 89.1 ± 1.3 μg/mL, respectively). Epi-geniposidic acid (1), geniposidic acid (2), and 3-O-acethyloleanolic acid (3) showed promising inhibitory activities against NO production (IC50 range 4.12–5.12 μg/mL). The iridoid mixture showed no cytotoxicity against RAW 264.7 macrophages up to a concentration of 100 μg/mL. Conclusion: P. suterella presents relevant biological properties and should be considered for further in vivo studies using a pulmonary TB model.

PDF
Images
Chemical Composition, Antimycobacterial and Antiinflammatory Activities of Iridoids and Triterpene from Psychotria suterella (Rubiaceae)
Keywords