Rhinacanthins-rich extract enhances glucose uptake and inhibits adipogenesis in 3T3-L1 Adipocytes and L6 Myotubes

Articles

Abstract
Pharmacognosy Magazine,2017,13,52s,s817-s821.
Published:January 2018
Type:Original Article
Authors:
Author(s) affiliations:

Muhammad Ajmal Shah1, Chanawee Jakkawanpitak2, Decha Sermwittayawong2, Pharkphoom Panichayupakaranant3
1Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
2Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
3Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Abstract:

Background: Obesity is one of the imperative dynamics in the incidence and intensification of type 2 diabetes mellitus (T2DM). Rhinacanthus nasutus leaf extracts are previously reported for their antidiabetic and antiobesity potential. Objective: The present study was performed to evaluate glucose uptake stimulatory and antiadipogenic activities of a standardized rhinacanthins-rich extract (RRE) and its marker compounds namely rhinacanthin-C (RC), rhinacanthin-D (RD), and rhinacanthin-N (RN) in 3T3-L1 and L6 cells. Materials and Methods: RRE was prepared by a green extraction process, and the marker compounds (RC, RD, and RN) were isolated from the RRE using a silica gel column chromatography. Glucose uptake stimulation in both 3T3-L1 and L6 cells was performed by quantification of residual glucose in the media using glucose oxidase kit. Antiadipogenic activity in 3T3-L1 adipocytes was performed by intracellular lipids quantification using oil red O dye. Results: At the highest effective dose, RRE (20 μg/mL) exhibited satisfactory glucose uptake stimulatory effect in 3T3-L1 adipocytes that equivalent to RN (20 μg/mL) and the positive control insulin (0.58 μg/mL) but higher than RC (20 μg/mL) and RD (20 μg/mL). In addition, treatments of L6 myotubes showed that RRE (2.5 μg/mL) exhibited potent and equivalent glucose uptake stimulation (>80%) to RC (2.5 μg/mL) and the standard drugs, insulin (2.90 μg/mL) and metformin (219.5 μg/mL), but higher than RD (2.5 μg/mL) and RN (2.5 μg/mL). Furthermore, RRE (20 μg/mL) exhibited potent antiadipogenic effect in 3T3-L1 adipocytes, which equivalent to RC (20 μg/mL) but higher than RD (20 μg/mL) and RN (20 μg/mL). Conclusions: The undertaken study suggests that RRE could be used as an effective remedy in the treatment of obesity-associated T2DM.

PDF
Keywords