A new sucrase enzyme inhibitor from Azadirachta indica

Articles

Abstract
Pharmacognosy Magazine,2016,12,46s,s293-s296.
Published:May 2016
Type:Original Article
Authors:
Author(s) affiliations:

Mohamed I. S. Abdelhady1, Usama Shaheen2, Ammar Bader3, Mahmoud A Youns4
1 Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
2 Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
3 Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
4 Department of Biochemistry, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; Division of Functional Genome Analysis, German Cancer Research Center, Heidelberg, Germany

Abstract:

Background: Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Materials and Methods: Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. Results: This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4`-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-4C1 -glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, 1H NMR, 13C NMR, 1H- 1H COSY, HSQC, NOESY and HMBC. Conclusion: Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity.

PDF
Keywords

Cite This Article