Chromatographic and spectrophotometric analysis of phenolic compounds from fruits of Libidibia ferrea Martius

Articles

Abstract
Pharmacognosy Magazine,2016,12,46s,s285-s291.
Published:May 2016
Type:Original Article
Authors:
Author(s) affiliations:

Magda R. A. Ferreira1, Mônica T. M. Fernandes2, Wliana A. V. da Silva2, Isabelle C. F. Bezerra3, Tatiane P de Souza4, Maria F Pimentel5, Luiz A. L. Soares6
1 Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, Federal University of Pernambuco; Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
2 Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, Federal University of Pernambuco, Recife, PE, Brazil
3 Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, Federal University of Pernambuco; Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
4 Department of Drugs and Foods, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, AM, Brazil
5 Department of Chemical Engineering, Federal University of Pernambuco, Recife, PE, Brazil
6 Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, Federal University of Pernambuco; Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco; Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil

Abstract:

Background: Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz (Fabaceae) is a tree which is native to Brazil, widely known as “Jucá,” where its herbal derivatives are used in folk medicine with several therapeutic properties. The constituents, which have already been described in the fruit, are mainly hydrolysable tannins (gallic acid [GA] and ellagic acid emailArticle.asp?issn=0973-1296;year=2016;volume=12;issue=46;spage=285;epage=291;aulast=Ferreira). Objective: The aim of this study was to investigate the phenolic variability in the fruit of L. ferrea by ultraviolet/visible (UV/VIS) and chromatographic methods (high-performance liquid chromatography [HPLC]/high-performance thin layer chromatography [HPTLC]). Materials and Methods: Several samples were collected from different regions of Brazil and the qualitative (fingerprints by HPTLC and HPLC) and quantitative analysis (UV/VIS and HPLC) of polyphenols were performed. Results: The HPTLC and HPLC profiles allowed separation and identification of both major analytical markers: EA and GA. The chemical profiles were similar in a number of spots or peaks for the samples, but some differences could be observed in the intensity or area of the analytical markers for HPTLC or HPLC, respectively. Regarding the quantitative analysis, the polyphenolic content by UV/VIS ranged from 13.99 to 37.86 g% expressed as GA or from 10.75 to 29.09 g% expressed as EA. The contents of EA and GA by liquid chromatography-reversed phase (LC-RP) method ranged from 0.57 to 2.68 g% and from 0.54 to 3.23 g%, respectively. Conclusion: The chemical profiles obtained by HPTLC or HPLC, as well as the quantitative analysis by spectrophotometry or LC-RP method, were suitable for discrimination of each herbal sample and can be used as tools for the comparative analysis of the fruits from L. ferrea.

PDF
Keywords