Antioxidant and Hemolysis Protective Effects of Polyphenol-Rich Extract from Mulberry Fruits

Articles

Abstract
Pharmacognosy Magazine,2018,14,53,103-109.
Published:February 2018
Type:Original Article
Authors:
Author(s) affiliations:

Palanigounder Ganeshan Ajay Krishna1, Thasma Raman Sivakumar1, Chao Jin1, Shao-Hu Li1, Yu-Jie Weng1, Juan Yin1, Jun-Qiang Jia2, Chu-Yan Wang3, Zhong-Zheng Gui2
1 Lab of Hi-Tech Processing for Sericultural Resources, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
2 Lab of Hi-Tech Processing for Sericultural Resources, School of Biotechnology, Jiangsu University of Science and Technology; Lab of Hi-Tech Processing for Sericultural Resources, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
3 Department of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, China

Abstract:

Background: Mulberry fruits are a superior source of polyphenol, especially anthocyanins that contribute potentially to the beneficial effects which include reducing the risk of cardiovascular diseases and cancers with antioxidant, anti-inflammatory, and chemoprotective properties. Objectives: In this study, purification of the polyphenol-rich extract from mulberry fruit (MPE) was purified and assessed the activities of antioxidant and hemolysis protective in vivo and in vitroMaterials and Methods: Antioxidant activities in vitro was measured by quantifying its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power and Fe2+-chelating ability. MPE was purified by high-pressure liquid chromatography (HPLC) and analyzed individual polyphenols using liquid chromatography–mass spectrometry (LC-MS)/MS. Results: The total polyphenol content was 147.69 ± 0.02 mg gallic acid equivalents (GAE)/g dried weight (DW) in the extract and 403.55 ± 0.02 mg GAE/g DW in the purified extract. Further identification by HPLC-ultraviolet-visible and LC-MS/MS analysis indicated in MPE, an anthocyanin compound, cyanidin-3-O-glucoside. With regard to in vitro assays, MPE possessed antioxidant effect, especially in Fe2+ chelating ability with an IC50value of 1.016 mg/mL. The protective effects on mouse red blood cell hemolysis and lipid peroxidation ex vivo were dose and time dependent. Conclusion: It indicates that MPE could be a good candidate for future biomedical applications to promote human health with limited side effects.

PDF
Keywords

Cite This Article