Identification of hepatoprotective constituents in Limonium tetragonum and development of simultaneous analysis method using high-performance liquid chromatography

Articles

Abstract
Pharmacognosy Magazine ,2017,13,52,535-541.
Published:November 2017
Type:Original Article
Authors:
Author(s) affiliations:

Jae Sun Lee1, Yun Na Kim1, Na-Hyun Kim2, Jeong-Doo Heo2, Min Hye Yang3, Jung-Rae Rho4, Eun Ju Jeong1
1Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
2Gyeongnam Department of Environment and Toxicology, Korea Institute of Toxicology, Gyeongnam 52834, Republic of Korea
3College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
4Department of Oceanography, Kunsan National University, Jeonbuk 54150, Republic of Korea

Abstract:

Background: Limonium tetragonum, a naturally salt-tolerant halophyte, has been studied recently and is of much interest to researchers due to its potent antioxidant and hepatoprotective activities. Objective: In the present study, we attempted to elucidate bioactive compounds from ethyl acetate (EtOAc) soluble fraction of L. tetragonum extract. Furthermore, the simultaneous analysis method of bioactive EtOAc fraction of L. tetragonum has been developed using high-performance liquid chromatography (HPLC). Materials and Methods: Thirteen compounds have been successfully isolated from EtOAc fraction of L. tetragonum, and the structures of 1–13 were elucidated by extensive one-dimensional and two-dimensional spectroscopic methods including 1H-NMR, 13C-NMR, 1H-1H COSY, heteronuclear single quantum coherence, heteronuclear multiple bond correlation, and nuclear Overhauser effect spectroscopy. Hepatoprotection of the isolated compounds against liver fibrosis was evaluated by measuring inhibition on hepatic stellate cells (HSCs) undergoing proliferation. Results: Compounds 1–13 were identified as gallincin (1), apigenin-3-O-β-D-galactopyranoside (2), quercetin (3), quercetin-3-O-β-D-galactopyranoside (4), (−)-epigallocatechin (5), (−)-epigallocatechin-3-gallate (6), (−)-epigallocatechin-3-(3″-O-methyl) gallate (7), myricetin-3-O-β-D-galactopyranoside (8), myricetin-3-O-(6″-O-galloyl)-β-D-galactopyranoside (9), myricetin-3-O-α-L-rhamnopyranoside (10), myricetin-3-O-(2″-O-galloyl)-α-L-rhamnopyranoside (11), myricetin-3-O-(3″-O-galloyl)-α-L-rhamnopyranoside (12), and myricetin-3-O-α-L-arabinopyranoside (13), respectively. All compounds except for 4, 8, and 10 are reported for the first time from this plant. Conclusion: Myricetin glycosides which possess galloyl substituent (9, 11, and 12) showed most potent inhibitory effects on the proliferation of HSCs.
.

PDF
Keywords