Anticancer potential of Moringa oleifera flower extract in human prostate cancer PC-3 cells via induction of apoptosis and downregulation of AKT pathway

Articles

Abstract
Pharmacognosy Magazine,2018,14,58,477-481.
Published:November 2018
Type:Original Article
Authors:
Author(s) affiliations:

Jiechang Ju1, Sivapragasam Gothai2, Mohadeseh Hasanpourghadi3, Anmar A Nasser4, Ibrahim Abdel Aziz Ibrahim5, Naiyer Shahzad5, Ashok Kumar Pandurangan6, Katyakyini Muniandy2, S Suresh Kumar7, Palanisamy Arulselvan8
1 Department of Andrology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, China
2 Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
3 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
4 Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
5 Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
6 School of Life Sciences, B.S. Abdur Rahman Crescent University, Chennai, Tamil Nadu, India
7 Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
8 Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, India

Abstract:

Background: Moringa oleifera (MO), or the horseradish tree, is a pantropical species that is known by such regional names as benzolive, drumstick tree, kelor, marango, mlonge, mulangay, nébéday, saijhan, and sajna. Over the past two decades, many reports have appeared in mainstream scientific journals describing its anticancer properties of MO. While much of this recent enthusiasm indeed appears to be justified, it is critical to evaluate therapeutic activity of MO on prostate cancer to separate rigorous scientific evidence from anecdote. MO contained active polyphenols such as ellagic acid, gallate, methyl gallate, catechol, kaempferol quercetin, and their derivatives. Objective: It is the purpose of this series of brief reviews to critically assess the efficacy of MO flower extract as an antiprostate cancer agent. Materials and Methods: The cell viability of the extract was determined using MTT in different time point and cell cycle progression studies was analyzed by flow cytometry. Various markers of apoptosis were evaluated by immunoblotting. Results: We observed that prostate cancer cells treated with MO flower extract caused 50% inhibition at a dose of 22.61 μg/mL and 6.25 μg/mL in PC-3 cells at 24 and 48 h, respectively. MO flower extract induced the accumulation of G1 phase cell cycle arrest and apoptosis by annexin V staining. Further, immunoblot detection of PARP cleavage leads to increase the protein expression of caspase-3 activity and Bax indicates induction of apoptosis. Conclusion: Together, the results suggest for the first time that administration of MO flower extract inhibits prostate cancer progression in PC-3 cells by interfering AKT pathway.

PDF
Keywords