Optimization of ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharide from radix Morindae officinalis by response surface methodology

Articles

Abstract
Pharmacognosy Magazine,2020,16,71,662-669.
Published:October 2020
Type:Original Article
Authors:
Author(s) affiliations:

Jie Shen, Zhenying Mei, Zhiqin Xu, Zhimin Zhao, Depo Yang, Xinjun Xu
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou; Guangdong Great Bay Area Institute of Southern Chinese Medicines, Huaiji, China

Abstract:

Objectives: In this study, we aimed to establish an efficient method for the extraction of radix Morindae officinalispolysaccharide (MOP) by applying ultrasonic technology and by optimizing the parameters through response surface methodology (RSM) based on the central composite design. Materials and Methods: Ultrasound-assisted enzymatic extraction (UAEE) was performed to extract the MOP. We applied an orthogonal array design to optimize the concentration of enzymes (cellulose, pectinase, and papain). The extraction parameters were optimized based on the RSM technique. Furthermore, the effects of ultrasound-assisted enzymatic treatment on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity by the MOP was optimized using the RSM technique. Results: According to our results, 1.0% cellulase, 1.5% pectinase, and 1.0% papain were the optimum concentrations of the enzyme (calculated based on the percentage dry weight of radix Morindae officinalis powder). The optimum conditions of extraction were as follows: 21 mL/g solvent–solid ratio, 280 W, pH of 5.3, and temperature of 50°C. Under these conditions, the yield of MOPs and DPPH-scavenging activity of MOP were 23.68% ± 0.52% (n = 3) and 117.26 ± 2.73 mg Vitamin C/100 g dry weight (n = 3), respectively. The overall desirability was 1.03 ± 0.01 (n = 3). Conclusion: UAEE was effective in the extraction of MOP, and RSM technique was adequate to design and optimize the extraction parameters.

PDF
Images
 Photomicrograph showing the gross appearance, skin tumor  in the skin tissues of experimental mice
Keywords