Chlorogenic acid in Viscum album callus is a potential anticancer agent against C6 glioma cells

Articles

Abstract
Pharmacognosy Magazine,2020,16,71,531-537.
Published:October 2020
Type:Original Article
Authors:
Author(s) affiliations:

Jinwoo Kim1, Suji Baek2, Kang Pa Lee2, Byung Seok Moon3, Hyun-Soo Kim4, Seung-Hae Kwon5, Dae won Lee6, Jisu Kim7
1 Department of Gyeongsangbuk-do Arboretum, Sumogwon-ro 647, Pohang, Gyeongbuk (37502); Department of Bio-Science, College of Natural Science, Dongguk University, Dongdae-ro, Gyeongju, Gyeongbuk (38066), Republic of Korea
2 Research and Development Center, UMUST R&D Corporation, Neungdong-ro, Gwangjin-gu, Seoul (05029), Republic of Korea
3 Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul (07804), Republic of Korea
4 National Marine Biodiversity Institute of Korea, Jangsan-ro, Seocheon, Chungcheongnam-do (33662), Republic of Korea
5 Korea Basic Science Institute, Seoul, (02841), Republic of Korea
6 Department of Bio-Science, College of Natural Science, Dongguk University, Dongdae-ro, Gyeongju, Gyeongbuk (38066), Republic of Korea
7 Physical Activity & Performance Institute; Department of Sports Medicine and Science in Graduated School, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul (05029), Republic of Korea

Abstract:

Background: Chlorogenic acid (CA), a polyphenolic component of fruits, vegetables, coffee, wine, and olive oil, has beneficial effects on human heath, including antioxidant and anticancer effects. However, its precise effects on glioma have not been examined. Objective: Our study aimed to explore the anticancer effects of CA obtained from Viscum album callus on C6 glioma cell migration and proliferation. Materials and Methods: Anticancer potency was analyzed by the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay to assess the ability to inhibit cell growth and proliferation. Cell mobility was investigated based on the Boyden chamber and the scratch wound healing assay. Factors involved in cell cycle progression were evaluated by mRNA and protein expression. Cell death was determined by staining with specific dyes and fluorescence microscopy. Results: CA significantly reduced C6 glioma cell proliferation and migration. Furthermore, it induced reactive oxygen species generation and apoptotic cell death. Treatment with CA also suppressed extracellular signal-regulated kinase ½ (ERK½) phosphorylation and the gene expression of cyclins E and A. Conclusion: Our results show that CA may regulate glioma cell migration and proliferation via modulation of ERK½ phosphorylation and cell cycle regulation. Thus, it might be a potent anticancer agent in preventing progression of glioma.

PDF
Images
Effect of chlorogenic acid and Viscum album callus ethanolic extract on C6 glioma cell viability
Keywords

Cite This Article