Comparative study of the pharmacokinetic parameters for salidroside in normal and estrogen-deficient female rats after oral administration of an aqueous extract of Fructus Ligustri Lucidi using a validated ultra-performance liquid chromatography MS

Articles

Abstract
Pharmacognosy Magazine,2020,16,71,471-478.
Published:October 2020
Type:Original Article
Authors:
Author(s) affiliations:

Beibei Chen1, Jinfa Tang2, Ming Niu3, Ruyuan Zhu1, Lin Li1, Lili Wang4, Yimiao Tian1, Rui Li1, Qiangqiang Jia1, Dandan Zhao1, Fangfang Mo1, Elena B Romanenko5, Alexander N Orekhov6, Sihua Gao1, Dieter Brömme7, Dongwei Zhang1
1 Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
2 The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
3 TCM Research Institute of General PLA, 302 Hospital, Beijing, China
4 Modern Research Center of TCM, Chinese Material Medical School, Beijing University of Chinese Medicine, Beijing, China
5 Department of Molecular Basis of Ontogenesis, Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
6 Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
7 Faculty of Dentistry, University of British Columbia, Vancouver, Canada

Abstract:

Background: Salidroside, one of the main active ingredients in Fructus Ligustri Lucidi (FLL), is well demonstrated to exert anti-osteoporotic effect. However, the plasma pharmacokinetic profile of salidroside in FLL in estrogen-deficient rats remains unknown. Objective: The objective was to develop a sensitive, rapid, and accurate ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for the determination of the pharmacokinetics profile of salidroside after oral administration of FLL aqueous extract in normal and ovariectomized (OVX) rats. Materials and Methods: OVX and normal rats were orally administrated with FLL at a bolus of 7 g/kg. Plasma samples were precipitated by methanol, and the supernatant was chromatographed by a Waters BEH C18column with a gradient elution of ammonium acetate and acetonitrile. Quantification was carried out on the electrospray ionization, positive multiple reaction monitoring modes. Results: The lower limit of detection was 50 ng/mL, and the dynamic linear range was 50–30,000 ng/mL with a value of R2 > 0.99. The intra- and inter-day precisions were lower than 14.67%, and accuracy was in the range of 99.29%–103.37%. The recovery of salidroside ranged from 88.90% to 101.78%, with the matrix effect ranging from 85.53% to 100.45%. The t1/2, MRT0–∞, and apparent volume of distribution for salidroside increased in OVX rats. Conclusion: A sensitive, accurate, and rapid method was successfully established and validated for the determination of plasma characteristics of salidroside in Sprague–Dawley (SD) rats. The results suggest that ovariectomy could interfere with salidroside metabolism in SD rats.

PDF
Images
 Chemical structures of salidroside  (a) and paracetamol  (b) (internal standard)
Keywords