Neuroprotective effect of the essential oil of Lavandula officinalis against hydrogen peroxide-induced toxicity in mice

Articles

Abstract
Pharmacognosy Magazine,2020,16,71,464-470.
Published:October 2020
Type:Original Article
Authors:
Author(s) affiliations:

Sarra Akermi1, Jackson Roberto Guedes da Silva Almeida2, Ahd Khedher1, Hafsia Bouzenna3, Sabah Dhibi4, Anouar Feriania4, Afoua Mufti1, Amal Daoud5, Abdelfattah Elfeki4, Najla Hfaiedh3
1 Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Sidi Ahmed Zarrouk, Gafsa, Tunisia
2 Center for Studies and Research of Medicinal Plants, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
3 Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Sidi Ahmed Zarrouk, Gafsa; Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences Sfax, Sfax, Tunisia
4 Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences Sfax, Sfax, Tunisia
5 Laboratory of Plant Biotechnology, Faculty of Science, University of Sfax, Sfax, Tunisia

Abstract:

Background: Brain is the main organ that manages all other organs and has significant oxygen requirements, which makes it vulnerable to reactive oxygen species, thus causing different neurological disorders. The aim of this work is the evaluation of Lavandula officinalis essential oil neuroprotective effect against hydrogen peroxide (HP)-induced toxicity in mice. Materials and Methods: Essential oil was extracted by hydrodistillation using a Clevenger-type apparatus. Essential oil analysis is performed using gas chromatography-mass spectrometry (GC-MS). Biological activity evaluation carried out the ferric reducing antioxidant power test, deoxyribonucleic acid (DNA) fragmentation assay, the histopathological study of the brain, and determination of antioxidant enzyme activities. Results: Chemical characterization of essential oil using GC-MS identified 47 compounds, accounting for almost 80% of the total oil and indicates the occurrence of monoterpenes and sesquiterpenes. The identified major compounds are pentanone (16.55%), propanal (15.89%), methyl ethyl ketone (13.51%), naphthalene (10.81%), terpinen-4-ol (6.55%), cyclopentanecarboxylic acid (4.77%), and isoborneol (2.27%). This study allowed us to investigate the effects of HP on brain function in Mus musculus adult mice by assessing DNA degradation, cell morphology, oxidative balance and brain weight variation. Furthermore, we have highlighted the beneficial effects of L. officinalis essential oil, which could significantly counteract all these alterations by its active compounds, which are endowed with potent biological activities. Conclusion: We can conclude that HP-induced damage in histomorphological changes in mice brain, significant atrophy, as well as an important alteration of the genetic expression.

PDF
Images
 Variations in brain weights of mice after 6  weeks of  treatments in controls
Keywords