Molecular interaction of naringin and its metabolite naringenin to human liver fibrosis proteins: An In Silico approach

Articles

Abstract
Pharmacognosy Magazine,2018,14,55s,s102-s109.
Published:June 2018
Type:Original Article
Authors:
Author(s) affiliations:

VJ Shine1, GI Anuja1, S Pradeep2, SR Suja1
1 Division of Ethnomedicine and Ethnopharmacology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
2 Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India

Abstract:

Background: Naringin, pharmaceutically active flavonoid, rapidly metabolizes in liver into naringenin. Both naringin and naringenin have significant biological activity and less toxicity. Objective: In the present study, in silico molecular interactions of naringin and its metabolite naringenin have been evaluated against different human liver fibrosis proteins. Materials and Methods: The major human therapeutic protein targets such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor-2 (VEGFR-2), fibroblast growth factor receptor-1 (FGFR1), Kelch-like ECH-associated protein-1 (Kaep1), transforming growth factor beta receptor I (TGFBR-1), angiotensin II receptor type-1 (Angio-II-Type-1), Janus kinase-2 (JAK-2), Zeta-chain-associated protein kinase-70 (ZAP-70) have been selected for the docking studies. This computational study was performed using Schrödinger Suite Maestro 10.3 Glide software 2015. Results: The studies demonstrated comparable binding affinities of naringin and naringenin with human therapeutic protein targets such as JAK-2, ZAP-70 Kinase, Angio-II-Type 1, TGFBR1, Kaep1, EGFR, VEGFR-2, and FGFR1 when compared to their respective standard drugs such as gefitinib, regorafenib, dovitinib, bardoxolone methyl, SB-431542, olmesartan, and ruxolitinib. Naringin showed better glide score ranging from −8.5 to −13.3 kcal/mol whereas its metabolite Naringenin also showed comparable glide score ranging from −5.4 to −9.3 kcal/mol. The binding of target proteins with respective standard drugs showed −2.2 to −10.12 kcal/mol. Conclusion: The observed in silico human protein interactions of naringin and its metabolite naringenin could be exploited for the anti-liver fibrosis therapy. The results derived from this pioneering virtual study may advance further mechanistic in vitro and preclinical in vivo studies.

PDF
Keywords