Responsive surface methodology optimizes extraction conditions of industrial by-products, Camellia japonica seed cake

Articles

Abstract
Pharmacognosy Magazine,2016,12,47,184-187.
Published:July 2016
Type:Original Article
Authors:
Author(s) affiliations:

Jae Kyeom Kim1, Ho-Jeong Lim2, Mi-So Kim2, Soo Jung Choi3, Mi-Jeong Kim3, Cho Rong Kim3, Dong-Hoon Shin3, Eui-Cheol Shin2
1 School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
2 Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea
3 Department of Food and Biotechnology, Korea University, Seoul 136-701, Republic of Korea

Abstract:

Background: The central nervous system is easily damaged by oxidative stress due to high oxygen consumption and poor defensive capacity. Hence, multiple studies have demonstrated that inhibiting oxidative stress-induced damage, through an antioxidant-rich diet, might be a reasonable approach to prevent neurodegenerative disease. Objective: In the present study, response surface methodology was utilized to optimize the extraction for neuro-protective constituents of Camellia japonica byproducts. Materials and Methods: Rat pheochromocytoma cells were used to evaluate protective potential of Camellia japonica byproducts. Results: Optimum conditions were 33.84 min, 75.24%, and 75.82°C for time, ethanol concentration and temperature. Further, we demonstrated that major organic acid contents were significantly impacted by the extraction conditions, which may explain varying magnitude of protective potential between fractions. Conclusions: Given the paucity of information in regards to defatted C. japonica seed cake and their health promoting potential, our results herein provide interesting preliminary data for utilization of this byproduct from oil processing in both academic and industrial applications.

PDF
Keywords