In vitro cytotoxicity and anti-herpes simplex virus type 1 activity of hydroethanolic extract, fractions, and isolated compounds from stem bark of Schinus terebinthifolius Raddi

Articles

Abstract
Pharmacognosy Magazine,2016,12,46,160-164.
Published:March 2016
Type:Original Article
Authors:
Author(s) affiliations:

Samara Requena Nocchi1, Gislaine Franco de Moura-Costa1, Claudio Roberto Novello2, Juliana Rodrigues1, Renata Longhini3, João Carlos Palazzo de Mello4, Benedito Prado Dias Filho5, Celso Vataru Nakamura5, Tânia Ueda-Nakamura5
1 Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
2 Coordination of Chemical Engineering, Federal Technical University of Paraná, Francisco Beltrão Campus, Santa Barbara Line s/n, BR-85601-970, Francisco Beltrão, Paraná, Brazil
3 Department of Pharmacy, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
4 Post-Graduate Program in Pharmaceutical Sciences; Department of Pharmacy, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
5 Post-Graduate Program in Pharmaceutical Sciences; Department of Health Basic Sciences, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil

Abstract:

Background: Herpes simplex virus type 1 (HSV-1) is associated with orofacial infections and is transmitted by direct contact with infected secretions. Several efforts have been expended in the search for drugs to the treatment for herpes. Schinus terebinthifolius is used in several illnesses and among them, for the topical treatment of skin wounds, especially wounds of mucous membranes, whether infected or not. Objective: To evaluate the cytotoxicity and anti-HSV-1 activity of the crude hydroethanolic extract (CHE) from the stem bark of S. terebinthifolius, as well as its fractions and isolated compounds. Materials and Methods: The CHE was subjected to bioguided fractionation. The anti-HSV-1 activity and the cytotoxicity of the CHE, its fractions, and isolated compounds were evaluated in vitro by SRB method. A preliminar investigation of the action of CHE in the virus–host interaction was conducted by the same assay. Results: CHE presented flavan-3-ols and showed anti-HSV-1 activity, better than its fractions and isolated compounds. The class of substances found in CHE can bind to proteins to form unstable complexes and enveloped viruses, as HSV-1 may be vulnerable to this action. Our results suggest that the CHE interfered with virion envelope structures, masking viral receptors that are necessary for adsorption or entry into host cells. Conclusion: The plant investigated exhibited potential for future development treatment against HSV-1, but further tests are necessary, especially to elucidate the mechanism of action of CHE, as well as preclinical and clinical studies to confirm its safety and efficacy.

PDF
Keywords