Chemical analysis, antioxidant, antichemotactic and monoamine oxidase inhibition effects of some pteridophytes from Brazil

Articles

Abstract
Pharmacognosy Magazine,2014,10,37s,s100-s109.
Published:February 2014
Type:Original Article
Authors:
Author(s) affiliations:

Juliana MM Andrade1, Carolina dos S Passos1, Roger R Dresch1, Maria Angélica Kieling-Rubio2, Paulo Roberto H Moreno3, Amélia T Henriques1
1 Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil
2 Department of Botany, UFRGS, Av. Bento Gonçalves, 9500, 91.501-970, Porto Alegre, RS, Brazil
3 Department of Fundamental Chemistry, University of São Paulo (USP), Av. Prof. Lineu Prestes 748 B11, 05.508-000, São Paulo, SP, Brazil

Abstract:

Background: Ferns are a group of plants that have been little explored from a chemical and biological perspective but that have interesting potential, occurring in various parts of the world. Objective: This work investigates the chemical profile and the biological effects of ferns from Brazil. Materials and Methods: Analyses were performed using rapid performance liquid chromatography (RP-LC) with a diode array detector (DAD). Extracts were tested for their in vitro antioxidant activity, by the total reactive antioxidant potential method and for their antichemotactic potential, by the Boyden chamber method. Cytotoxic effects were assessed by lactate dehydrogenase levels, while the monoamine oxidase (MAO) assay was carried out using a fluorescence-based method. Results: Different chemical compositions were found for the studied ferns, such as Asplenium gastonis, in which hesperidin was identified in its extract, while A. serra showed the presence of xanthone mangiferin. The most samples with highest antioxidant activity were the Asplenium serraLastreopsis amplissima and Cyathea dichromatolepis extracts, at 10 μg/mL. High antichemotactic activity was found for A. serra (94.06%) and Didymochlaena truncatula (93.41%), at 10 μg/mL. The extracts showed no cytotoxicity at the highest concentration. Against MAO-A, D. truncatula (82.61%), Alsophila setosa (82.21%), Cyathea phalerata (74.07%) and C. delgadii (70.32%) were the most active extracts (100 μg/mL). Conclusion: The hypothesis was considered that phenolics and triterpenes are responsible for these pronounced activities.

PDF
Keywords