Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose

Articles

Abstract
Pharmacognosy Magazine,2014,10,37s,s92-s99.
Published:February 2014
Type:Original Article
Authors:
Author(s) affiliations:

Shu Yun Zhu1, Ying Dong2, Jie Tu1, Yue Zhou1, Xing Hua Zhou1, Bin Xu1
1 Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
2 Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China

Abstract:

Background: Silybum marianum has been used as herbal medicine for the treatment of liver disease, liver cirrhosis, and to prevent liver cancer in Europe and Asia since ancient times. Silybum marianum oil (SMO), a by-product of silymarin production, is rich in essential fatty acids, phospholipids, sterols, and vitamin E. However, it has not been very good development and use. Objective: In the present study, we used olive oil as a control to investigate the antioxidant and anti-aging effect of SMO in D-galactose (D-gal)-induced aging mice. Materials and Methods: D-gal was injected intraperitoneally (500 mg/kg body weight daily) for 7 weeks while SMO was simultaneously administered orally. The triglycerides (TRIG) and cholesterol (CHOL) levels were estimated in the serum. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), monoamine oxidase (MAO), malondialdehyde (MDA), caspase-3, and Bcl-2 were determined in the liver and brain. The activities of Na + -K + -adenosine triphosphatase (ATPase), Ca 2+ -Mg 2+ -ATPase, membrane potential (ΔΨm), and membrane fluidity of the liver mitochondrial were estimated. Results: SMO decreased levels of TRIG and CHOL in aging mice. SMO administration elevated the activities of SOD, GSH-Px, and T-AOC, which are suppressed by aging. The levels of MAO and MDA in the liver and brain were reduced by SMO administration in aging mice. Enzyme linked immunosorbent assay showed that SMO significantly decreased the concentration of caspase-3 and improved the activity of Bcl-2 in the liver and brain of aging mice. Furthermore, SMO significantly attenuated the D-gal induced liver mitochondrial dysfunction by improving the activities of Na + -K + -ATPase, Ca 2+ -Mg 2+ -ATPase, membrane potential (ΔΨm), and membrane fluidity. Conclusion: These results indicate that SMO effectively attenuated oxidative damage and improved apoptosis related factors as well as liver mitochondrial dysfunction in aging mice.

PDF
Keywords