Hepatoprotective effect of gallotannin-enriched extract isolated from gall on hydrogen peroxide-induced cytotoxicity in HepG2 cells

Articles

Abstract
Pharmacognosy Magazine,2017,13,50s,s294-s300.
Published:July 2017
Type:Original Article
Authors:
Author(s) affiliations:

Jun Go1, Ji Eun Kim1, Eun Kyoung Koh1, Sung Hwa Song1, Hyun Gu Kang2, Young Hee Lee3, Han Do Kim3, Jin Tae Hong4, Dae Youn Hwang1
1 Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Korea
2 Laboratory of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University, Cheongju 362-763, Korea
3 Department of Organic Material Science and Engineering, Pusan National University, Busan 609-735, Korea, Korea
4 Department of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea

Abstract:

Background: Gall (Galla Rhois [GR]) is known to have antibacterial, anti-inflammatory, antimetastatic, and anti-invasion activities and exert hepatoprotective effects. However, the hepatoprotective effects of gallotannin-enriched GR (GEGR) and their mechanisms have not yet been investigated. Objective: The potential protective effect of GEGR against hepatotoxicity induced by hydrogen peroxide (H2O2) was investigated. Materials and Methods: Changes in cell viability, apoptosis protein expression, and reactive oxygen species (ROS) generation were determined in HepG2 cells that were pretreated with four different concentrations of GEGR (6.25–50 μg/ml) for 24 h before H2O2exposure. Results: GEGR consisted of gallotannin (69.2%), gallic acid (26.6%), and methyl gallate (4.2%) and showed remarkable 2,2-diphenyl-1-picrylhydrazyl scavenging activity (inhibitory concentration 50% = 0.212 μg/ml). The lethal dose 50% and effective dose 50% values for the response of HepG2 cells to GEGR were determined to be 178 and 6.85 μg/ml, respectively. Significant reductions in the immunofluorescence intensity indicating apoptosis were also detected in the nuclei of HepG2 cells stained with 4',6-diamidino-2-phenylindole and Annexin V after GEGR treatment. The Bax/Bcl-2 ratio and active caspase-3 level were higher in H2O2 + vehicle-treated cells. However, these levels gradually decreased to those of the No-treated group in the GEGR pretreated group even though little or no decrease was observed in response to low GEGR concentrations. Furthermore, the GEGR pretreated group showed a reduced level of 2-,7--dichlorofluorescein diacetate stained cells, indicating ROS generation relative to the H2O2 + vehicle-treated group. Conclusion: The results of this study provide strong evidence that GEGR can prevent cell death induced by H2O2in HepG2 cells through the induction of antioxidant conditions.

PDF
Keywords