Preparation of ginseng extract with enhanced levels of ginsenosides Rg1 and Rb1 using high hydrostatic pressure and polysaccharide hydrolases

Articles

Abstract
Pharmacognosy Magazine,2017,13,49s,s142-s147.
Published:April 2017
Type:Original Article
Authors:
Author(s) affiliations:

Sasikumar Arunachalam Palaniyandi1, Joo-Won Suh2, Seung Hwan Yang3
1Interdisciplinary Program of Biomodulation, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do; Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, Korea
2Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do; Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, Korea
3Department of Biotechnology, Chonnam National University, Daehak-ro, Yeosu-si, Jeollanam-do, Korea

Abstract:

Background: Ginsenosides are the principal components responsible for the pharmacological activities of ginseng. Ginsenosides Rg1 and Rb1 are the major compounds recognized as marker substances for quality control of ginseng-based products. These major compounds can be transformed to several pharmacologically active minor ginsenosides by chemical, microbial, and enzymatic means. Materials and Methods: In the present study, a combination of polysaccharide hydrolases and high hydrostatic pressure (HHP) were used to extract ginseng saponins enriched with ginsenosides Rg1 and Rb1. Temperature, pH, time, ginseng-to-water ratio, and pressure were optimized to obtain the maximum amount of Rg1 and Rb1 in the resulting extract using commercial polysaccharide hydrolases. Results: This study showed that treatment with a combination of cellulase, amylase, and pectinase at 100 MPa pressure, pH 4.8, and 45°C for 12 h resulted in higher Rg1 and Rb1 levels in the extract. Conclusion: This study describes a cheap and ecofriendly method for preparing ginseng extract enriched with Rg1 and Rb1.

PDF
Keywords