Prenatal developmental toxicity study of glycosides-based standardized fenugreek seed extract in rats

Articles

Abstract
Pharmacognosy Magazine,2017,13,49s,s135-s141.
Published:April 2017
Type:Original Article
Authors:
Author(s) affiliations:

Pallavi O Deshpande1, Vishwaraman Mohan1, Mukul p Pore2, Shailesh Gumaste2, Prasad A Thakurdesai1
1Department of Scientific affairs, Indus Biotech Private Limited, Kondhwa, Pune, Maharashtra, India
2Intox Pvt. Ltd, Urawade, Mulshi, Pirangut, Pune, Maharashtra, India

Abstract:

Context: Glycoside-based standardized fenugreek seed extract (SFSE-G) demonstrated promising efficacy in animal models of immune-inflammatory conditions. Aim: The present study was aimed at embryo-fetal development toxicity evaluation of SFSE-G in Wistar rats as per guideline No. 414 of the Organization for Economic Co-operation and Development (OECD). Material and Methods: Mated female rats were randomized into four groups of 30 each and received oral doses of either SFSE-G at 250, 500, and 1000 mg/kg or vehicle (water) during the period of gestation (postconception) from gestational day 5 (GD5, an implantation day) until 1 day before cesarean sections (GD19). Maternal food consumption, body weights, and clinical signs were monitored throughout gestation. Cesarean sections were performed on GD20 and fetal observations (gravid uterine weight, implantation sites, early and late resorptions, live and dead fetuses) were recorded. Live fetuses were weighed and examined for external, visceral, and skeletal variations and malformations. Results: None of the SFSE-G-treated groups showed maternal and embryo–fetal toxicity. Occasional and incidental skeletal and visceral malformations were observed and found to be spontaneous and unrelated to the treatment. Conclusion: Oral exposure of SFSE-G during the prenatal period did not show significant maternal and embryo-fetal toxicity up to a dose of 1000 mg/kg in rats. Therefore, the no-observed-adverse-effect level for SFSE-G for prenatal oral exposure was considered to be 1000 mg/kg.

PDF
Keywords