Near-infrared spectroscopy as a process analytical technology tool for monitoring the parching process of traditional chinese medicine based on two kinds of chemical indicators

Articles

Abstract
Pharmacognosy Magazine,2017,13,50,332-337.
Published:April 2017
Type:Original Article
Authors:
Author(s) affiliations:

Kaiyue Li1, Weiying Wang1, Yanping Liu1, Su Jiang2, Guo Huang2, Liming Ye1
1Department of Pharmacy, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
2Department of Application, Sichuan Vspec Technologies Co., Ltd. Chengdu 610000, PR China

Abstract:

Background: The active ingredients and thus pharmacological efficacy of traditional Chinese medicine (TCM) at different degrees of parching process vary greatly. Objective: Near-infrared spectroscopy (NIR) was used to develop a new method for rapid online analysis of TCM parching process, using two kinds of chemical indicators (5-(hydroxymethyl) furfural [5-HMF] content and 420 nm absorbance) as reference values which were obviously observed and changed in most TCM parching process. Materials and Methods: Three representative TCMs, Areca (Areca catechu L.), Malt (Hordeum Vulgare L.), and Hawthorn (Crataegus pinnatifida Bge.), were used in this study. With partial least squares regression, calibration models of NIR were generated based on two kinds of reference values, i.e. 5-HMF contents measured by high-performance liquid chromatography (HPLC) and 420 nm absorbance measured by ultraviolet–visible spectroscopy (UV/Vis), respectively. Results: In the optimized models for 5-HMF, the root mean square errors of prediction (RMSEP) for Areca, Malt, and Hawthorn was 0.0192, 0.0301, and 0.2600 and correlation coefficients (Rcal) were 99.86%, 99.88%, and 99.88%, respectively. Moreover, in the optimized models using 420 nm absorbance as reference values, the RMSEP for Areca, Malt, and Hawthorn was 0.0229, 0.0096, and 0.0409 and Rcalwere 99.69%, 99.81%, and 99.62%, respectively. Conclusions: NIR models with 5-HMF content and 420 nm absorbance as reference values can rapidly and effectively identify three kinds of TCM in different parching processes. This method has great promise to replace current subjective color judgment and time-consuming HPLC or UV/Vis methods and is suitable for rapid online analysis and quality control in TCM industrial manufacturing process.

PDF
Keywords