Celastrus paniculatus seed oil ameliorates oxidative stress in lipopolysaccharide-induced respiratory inflammation in mice

Articles

Abstract
Pharmacognosy Magazine,2022,18,78,400-405.
Published:July 2022
Type:Original Article
Authors:
Author(s) affiliations:

William R Surin1, Eveline J Sharon1, Archana Kullu2, Santhosh Kacham1, S Sandya2
1 Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
2 Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka, India

Abstract:

Background: Celastrus paniculatus have been reported to possess various medicinal properties. However, very little is known about its effect on respiratory inflammation. Objectives: We evaluated Celastrus paniculatus seed oil (CP oil) on lipopolysaccharide (LPS)-induced mice model of respiratory inflammation. Materials and Methods: Both short-term and long-term studies were carried out. In short-term study, C57BL/6 mice were exposed to LPS (10 mg/kg) by intranasal route for one week. CP oil (1 g/kg) was given orally on the 1st, 3rd and 5th day. All the mice were sacrificed on the 7th day. In long-term study, C57BL/6 mice were exposed to LPS (10 mg/kg) by the intranasal route for one month. CP oil (1 g/kg) or theophylline (1 mg/kg) was administered twice a week for one month. At the end of the treatment, Bronchoalveolar lavage (BAL) fluid was collected and labelled with CD3e FITC, Ly-6G (Gr-1) PE-Cy-7, Allergin-1 eFlour® 660, CD14 APC and 2',7'-dichlorofluorescein diacetate (20 μM) and analyzed by flow cytometer (BD FACSCanto™ II) for cellular infiltration and reactive oxygen species (ROS) generation. There was a significant reduction in neutrophil infiltration following CP oil treatment for one month ( 68±6% vs 40±7%, P < 0.05). Furthermore, there was a significant decrease in ROS generation following CP oil treatment for one week (5873 ± 1133 vs 2581 ± 1359; P < 0.05) and one month (20618 ± 1854 vs 5850 ± 1006; P < 0.05). Further, theophylline treatment for one month reduced the ROS generation significantly (20618 ± 1854 vs 5286 ± 2413; P < 0.05). Conclusion: Celastrus paniculatus seed oil seems to reduce oxidative stress by inhibiting the generation of reactive oxygen species in LPS-induced lung inflammation.

PDF
Images
Celastrus paniculatus seed oil ameliorates oxidative stress in lipopolysaccharide-induced respiratory inflammation in mice
Keywords