Rapid identification of the indigenous medicinal crop Cinnamomum osmophloeum from various adulterant Cinnamomum species by DNA polymorphism analysis

Articles

Abstract
Pharmacognosy Magazine,2020,16,68,64-68.
Published:March 2020
Type:Original Article
Authors:
Author(s) affiliations:

Bo-Cheng Yang1, Meng-Shiunn Lee2, Fang-Chun Sun2, Heng-Hsiang Chao1, Wen-Te Chang1, Ming-Kuem Lin1, Hsi-Jien Chen3, Meng-Shiou Lee1
1 Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
2 Department of Bioresources, Da-Yeh University, Changhua, Taiwan
3 Department of Safety, Health and Environmental Engineering, Mingchi University of Technology, Taipei, Taiwan

Abstract:

Background: Cinnamomum osmophloeum (Co), a member of the Lauraceae, is an indigenous medicinal crop in Taiwan, and it contains higher cinnamaldehyde in essential oil than do other Cinnamomum species. Among these species, Cinnamomum burmannii (Cb) is frequently adulterated as Co because of their similar morphological characteristics or features. Objective: The purpose of this study was to develop a DNA-based molecular method for rapid authentication of the indigenous Co and prevention of its adulteration. Materials and Methods: The internal transcribed spacer (ITS) regions of nuclear ribosomal DNA from various Cinnamomum species were amplified by polymerase chain reaction (PCR), and these obtained sequences were used for sequence analysis. Based on the sequence variants among various Cinnamomum species, restriction fragment length polymorphism (RFLP) was used to differentiate these Cinnamomum plants. Results: Two restriction endonucleases, MylI and EcoRV, were specifically used to digest the PCR-amplified ITS DNA from seven Cinnamomum species. The PCR-RFLP results demonstrated that the different restriction patterns that were produced by these two restriction enzymes clearly distinguished Co from Cb and five other Cinnamomum species simultaneously. Conclusion: The PCR-RFLP analysis developed in this study provides an alternative method for rapidly identifying Cinnamomum plants at the species level using DNA polymorphisms.

PDF
Images
 (a) Amplification of internal transcribed spacer DNA from  various Cinnamomum plants by polymerase chain reaction
Keywords