Anti-inflammatory and antinociceptive activities of Salvia keerlii

Articles

Abstract
Pharmacognosy Magazine,2020,16,67,27-33.
Published:February 2020
Type:Original Article
Authors:
Author(s) affiliations:

Roberto Serrano-Vega1, Cuauhtemoc Pérez-González2, Ángel Josabad Alonso-Castro3, Juan RamRamón Zapata-Morales3, Salud Pérez-Gutiérrez2
1 Doctorate of Biological and Health Sciences, University Autónoma Metropolitana, GTO, México
2 Department of Sistemas Biológicos, University Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Ciudad de México, México
3 Department of Pharmacy, University of Guanajuato, Noria Alta S/N C.P. 36050 Guanajuato, GTO, México

Abstract:

Background: Inflammation is a response to an attack on the body and is treated with several drugs that cause severe side effects. An alternative treatment source is plants, such as Salvia keerlii (SAKE) Benth. Objective: The objective is to study the determination of the anti-inflammatory and antinociceptive properties and chemical composition of the chloroform extract of SAKE. Materials and Methods: The plant was defatted with hexane, and then, chloroform and methanol extracts were obtained by heating, and the solvent was evaporated. The chemical composition of the extract was analyzed using gas chromatography–mass spectrometer. Total phenolic was determined using Folin–Ciocalteu reagent, and total flavonoid was determined by AlCl3assay. The acute and chronic anti-inflammatory effects of SAKE were evaluated on ear edema induced with 12-O-tetradecanoylphorbol-13-acetate, and the antinociceptive activity was determined. The effects of SAKE on protein denaturation and membrane stabilization were determined. The levels of nitric oxide, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-10 were measured in J774A.1 macrophages stimulated with lipopolysaccharide. Results: SAKE at 2 mg/ear inhibited ear edema by 84.96% in the acute assay, whereas 100 and 200 mg/kg (p. o.) SAKE decreased inflammation in the chronic assay. In macrophages, SAKE decreased the levels of TNF-α (1.7-fold), IL-1β (1.7-fold), and IL-6 (1.9-fold) but increased the levels of IL-10 (1.9-fold). SAKE inhibited protein denaturation (IC50 =8.68 μg/mL). The inhibition of writhing obtained with SAKE at doses of 10, 50, 100, and 200 mg/kg was 28.73%, 46.48%, 56.1%, and 63.05%, respectively. Conclusions: SAKE has in vitro and in vivo anti-inflammatory and antinociceptive effects.

PDF
Images
Effect on the cell viability of macrophages treated with  Salvia keerlii
Keywords