Background: Osteoporosis, a skeletal disease, that leads to increased fracture risk, features an enhanced osteoclast formation and bone resorption. Identification of agents that modulate aberrant osteoclast formation and function is important for the treatment of osteoporosis. Objective: The current study describes for the first time that Pila globosa snail extract inhibits osteoclastogenesis in vitro and thus suppresses bone loss in ovariectomy-induced rat model. Materials and Methods: Ovariectomized (Ovx) rats were treated with P. globosa snail extract and compared with sham, Ovx, and Ovx treated with zoledronate groups. Serum levels of C-terminal crosslinking telopeptides of type-1 collagen (CTX-1), TRAP5b, and antioxidant markers were determined. mRNA expressions of cathepsin K (CTSK), TRAP, calcitonin receptor (CTR), and matrix metalloproteinase 9 (MMP-9) were also assessed. Immunoblots of nuclear factor of activated T-cells c1 (NFATc1), c-Fos, TNF receptor-associated factor 6, c-Jun, and nuclear factor κB (NFκB) proteins were analyzed. Results and Discussion: P. globosa snail extract induced a decrease in the activation of NFκB, c-Fos, and NFATc1, which resulted in the downregulation of target genes, CTSK, TRAP, CTR, and MMP-9. P. globosa snail extract decreased the serum markers of bone resorption, C-terminal telopeptides of type-1 collagen (CTX-1), and tartrate-resistant acid phosphatase 5b (TRAP5b), reflecting the reduced number and activity of osteoclasts. Moreover, the results also suggested that the protective effect of P. globosa snail extract against osteoporosis is associated with the reduction of oxidative stress as evidenced by decreased malondialdehyde and increased serum antioxidant markers, superoxide dismutase, catalase, and glutathione. Conclusion: The upshot of the study suggests that the P. globosa snail extract represents a potential treatment option against osteolytic bone disease.