Potential Cyclooxygenase (COX-2) enzyme inhibitors from Myrica nagi-from in-silico to in-vitro investigation

Articles

Abstract
Pharmacognosy Magazine ,2019,15,64,280-287.
Published:August 2019
Type:Original Article
Authors:
Author(s) affiliations:

HP Prashanth Kumar1, Prachurjya Panda2, Prashantha Karunakar3, Kotikalapudi Shiksha2, Laxmi Singh2, Nijalingappa Ramesh1, Talambedu Usha4, Sushil Kumar Middha2
1Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka, India
2Department of Biochemistry and Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, Karnataka, India
3Department of Biotechnology, PES University, Bengaluru, Karnataka, India
4Department of Biochemistry, Bangalore University, Bengaluru, Karnataka, India

Abstract:

Introduction: Myrica nagi Thunb. (family Myricaceae) are actinorhizal plants showing symbiotic interaction with Frankia. Inhibition of cyclooxygenase-2 (COX-2) enzyme is known to be significant in preventing inflammation and in therapeutics. Objectives: Our principal focus was to identify COX-2 enzyme inhibitors, safer and natural anti-inflammatory compounds from M. nagi. Protein–ligand interaction has a significant role in structure-based drug design. Materials and Methods: Sixty-eight phytochemicals were therefore screened and evaluated for their binding energies with COX-2. These phytoconstituents were screened and analyzed for drug Likeliness along with Lipinski's rule of five. The X-ray crystallographic structure of the target COX-2 (protein data bank [PDB] ID: 4PH9), obtained from PDB, was docked with PubChem structures of phytochemicals using AutoDock 4.2 that uses Lamarckian genetic algorithm. Further, myricetin was subjected to in vitro anti-inflammatory assay using RAW-264.7 cell lines and inhibitory concentration (IC50) value was also determined. Results: The myricetin, myricitrin, and corchoionoside-C inhibited COX-2 with − 6.52, −4.94, and − 4.94 Kcal/mol binding energies, respectively, comparable to ibuprofen. Eventually, bioactivity score and absorption distribution metabolism excretion-toxicity properties showed considerable biological activities as G protein-coupled receptor, nuclear receptor, protease inhibitor, and enzyme inhibitors for myricetin, myricitrin, and corchoionoside-C phytochemicals. Molecular docking revealed hydrophobic interactions followed by four, nine, and four numbers of hydrogen bonds between myricetin, myricitrin, and corchoionoside-C, respectively, within the binding site of COX-2. Flavonol myricetin showed 112 μg/mL as IC50 value when it was subjected to in vitro cytotoxicity assay. These results clearly demonstrated that myricetin, myricitrin, and corchoionoside-C could act as highly potential COX-2 inhibitors. Therefore, in silico and in vitro studies revealed that of three best phytochemicals, myricetin could be promising candidate.

PDF
Images
 Surface view of cyclooxygenase-2 (Protein Data Bank ID: 4PH9)  with myricitrin in the binding site
Keywords