Bioactive compound of Ocimum sanctum carvacrol supplementation attenuates fluoride toxicity in sodium fluoride intoxicated rats: A study with respect to clinical aspect

Articles

Abstract
Pharmacognosy Magazine ,2019,15,62,144-149.
Published:April 2019
Type:Original Article
Authors:
Author(s) affiliations:

Kondeti Ramudu Shanmugam1, Mavulapati Siva2, Sahukari Ravi3, Bhasha Shanmugam3, Kesireddy Sathyavelu Reddy3
1Department of Zoology, TRR Government Degree College, Kandukur, Prakasam, India
2Department of Zoology, TRR Government Degree College, Kandukur, Prakasam; Division of Molecular Biology and Ethanopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
3Division of Molecular Biology and Ethanopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India

Abstract:

Background: Ocimum sanctum (OS) Linn. commonly known as Holy Basil or Tulsi is an Ayurvedic herb of India. The culinary, medicinal, and industrial importance of this plant led to explore its chemical and pharmacological properties. Objective: The present study was carried out to know the anti-oxidant activity of carvacrol bioactive compound of OS in sodium fluoride (NaF) rats and free-radical scavenging activities of OS. Materials and Methods: Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione (GSH), GSH-s-transferase (GST), malonaldehyde (MDA), alanine aminotransferase (AAT), aspartate aminotransferase (AST), alkaline phosphatase (ALKP), calcium (Ca), and phosphorus (P4) levels are estimated in all experimental groups. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), and hydroxyl radical activities are analyzed in the ethanolic extract of OS. Results: SOD, CAT, GPx, GR, GSH, activities, and Ca levels depleted and GST, MDA, AAT, AST, ALKP, and P4 levels elevated in NaF intoxicated rats. Whereas carvacrol supplementation normalized all the antioxidant enzymes and hepatic markers in NaF toxicity rats. DPPH, H2O2, and hydroxyl radical of OS showed potent free-radical scavenging activities. In addition, histopathological studies also prove that carvacrol protected the liver tissue from fluoride toxicity in rats. Conclusion: The present study revealed that carvacrol of OS modulated the antioxidant enzymes and hepatic stress markers in NaF rats. Our research study will be helpful in the development of new active principle and nutraceuticals in the area of drug resistance and therapeutic compounds against disease vectors.

PDF
Images
Effect of Carvacrol on Liver tissue in Fluorosis rats
Keywords