Hepatoprotective and antioxidant potential of radish seed aqueous extract on cadmium-induced hepatotoxicity and oxidative stress in mice

Articles

Abstract
Pharmacognosy Magazine ,2019,15,61,283-289.
Published:March 2019
Type:Original Article
Authors:
Author(s) affiliations:

Qingfeng He1, Yunjing Luo2, Pingping Zhang3, Chengsong An3, Ailin Zhang3, Xiaodan Li3, Lingling You3, Cuicui Liu3
1College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing; Department of Food Quality and Safety, College of Food Science and Biotechnology, Tianjin Agricultural University, Xiqing, Tianjin, China
2College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
3Department of Food Quality and Safety, College of Food Science and Biotechnology, Tianjin Agricultural University, Xiqing, Tianjin, China

Abstract:

Background: Exposure to cadmium (Cd) is a major environmental pollutant that causes injury on many organs and tissues, particularly the liver. However, the protection of radish seed aqueous extract (RSE) against hepatic injury in Cd-exposed mice yet remains unclear. Objective: The research aimed to investigate the mitigation effect of RSE against Cd-induced hepatotoxicity in experimental animals. Materials and Methods: The mice were administered intraperitoneally with Cd Chloride (CdCl2, 75 mg/kg b. wt) as a positive control to compare RSE. The hepatic function and antioxidant status were assessed in liver tissue of poisoned and control mice. Results: Levels of serum hepatic enzymes (aspartate transaminase: AST and alanine transaminase: ALT) as well as total bilirubin were significantly increased in Cd-exposed mice. In addition, Cd exposure elicited enhancement of oxidative stress level. Co-treatment with RSE (200 and 400 mg/kg b. wt) significantly decreased the serum levels of liver function biomarkers. Furthermore, RSE treatment showed a significant reduction of lipid peroxidation and increase of enzyme and glutathione concentrations. Histopathological analysis was parallel to these biochemical findings. Conclusion: The results clearly demonstrated that RSE is effective for ameliorating hepatic cytotoxicity and oxidative damage arising from Cd exposure.

PDF
Images
 Chemical structures of sulforaphene (a) and sulforaphane (b)
Keywords