Discovery of novel human epidermal growth factor receptor-2 inhibitors by structure-based virtual screening

Articles

Abstract
Pharmacognosy Magazine,2016,12,46,139-144.
Published:March 2016
Type:Original Article
Authors:
Author(s) affiliations:

Zheng Shi1, Tian Yu1, Rong Sun2, Shan Wang1, Xiao-Qian Chen1, Li-Jia Cheng1, Rong Liu1
1 Department of Basic Medicine, School of Medicine and Nursing, Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610015, China
2 Department of Bioinformatics, School of Life Sciences, Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China

Abstract:

Background: Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Objective: Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. Materials and Methods: In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential “new use” drugs. Results: Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Conclusion: Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study.

PDF
Keywords