Selective Cytotoxicity and Pro-apoptotic Activity of Stem Bark of Wrightia tinctoria (Roxb.) R. Br. in Cancerous Cells

Articles

Abstract
Pharmacognosy Magazine,2015,11,44s2,s481-s487.
Published:November 2015
Type:Original Article
Authors:
Author(s) affiliations:

Shilpee Chaudhary1, Raviraj Anand Devkar2, Deepak Bhere3, Manganahalli Manjunath Setty2, Karkala Sreedhara Ranganath Pai1
1 Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
2 Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
3 Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

Abstract:

Background: Wrightia tinctoria (Roxb.) R. Br. is a widely available shrub in India used traditionally in various ailments, including cancer. However, the anticancer activity of the bioactive fractions has not been validated scientifically. Objective: To investigate the anticancer potential of stem bark of W. tinctoria and establish its phytochemical basis. Materials and Methods: The ethanol extract and subsequent fractions, petroleum ether, ethyl acetate, n-butanol, and aqueous were prepared by standard methods. In vitro cytotoxicity was determined in MCF-7 (breast) and HeLa (cervical) adenocarcinoma cells, and V79 (nontumor fibroblast) cells and apoptogenic activity in MCF-7 cells by acridine orange (AO)/ethidium bromide (EB) staining. Additionally, the antioxidant potential was evaluated using suitable methods. High-performance thin layer chromatography (HPTLC) analysis was performed for identification of active phytoconstituents. Results: Petroleum ether and ethyl acetate fractions were most potent with IC50values of 37.78 and 29.69 μg/ml in HeLa and 31.56 and 32.63 μg/ml in MCF-7 cells respectively in the sulforhodamine B assay. Comparable results were obtained in HeLa cells in 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyl tetrazolium bromide assay and interestingly, the fractions were found to be safe to noncancerous fibroblast cells. Both fractions induced significant (P < 0.05) apoptotic morphological changes observed by AO/EB staining. Moreover, extract/fractions exhibited excellent inhibition of lipid peroxidation with the ethyl acetate fraction being most active (IC50: 23.40 μg/ml). HPTLC confirmed the presence of two anti-cancer triterpenoids, lupeol, and β-sitosterol in active fractions. Conclusion: Extract/fractions of W. tinctoria exhibit selective cytotoxicity against cancerous cells that is mediated by apoptosis. Fractions are less toxic to noncancerous cells; hence, they can be developed as safer chemopreventive agents.

PDF
Keywords