Synergistic Caseinolytic Activity and Differential Fibrinogenolytic Action of Multiple Proteases of Maclura spinosa (Roxb. ex Willd.) latex

Articles

Abstract
Pharmacognosy Magazine,2015,11,44s2,s457-s461.
Published:November 2015
Type:Original Article
Authors:
Author(s) affiliations:

BK Venkatesh1, Raghu Ram Achar1, P Sharanappa2, BS Priya3, S Nanjunda Swamy1
1 Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Research Foundation, JSS Technical Institutions Campus, Mysore, India
2 Department of Studies in Biosciences, University of Mysore, Hemagangothri, Hassan, India
3 Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India

Abstract:

Background: Kollamalayaali tribes of South India use latex of Maclura spinosa for milk curdling. This action is implicated to proteases which exhibit strong pharmacological potential in retardation of blood flow and acceleration of wound healing. Objective: To validate the presence of a proteolytic enzyme(s) in Maclura spinosa latex (MSL), and to investigate their probable role in hemostasis. Materials and Methods: Processed latex was examined for proteolytic and hemostatic activity using casein and human fibrinogen as substrates, respectively. Caseinoltyic activity was compared with two standard proteases viz., trypsin I and trypsin II. Effect of various standard protease inhibitors viz., iodoacetic acid (IAA), phenylmethylsulfonyl fluoride (PMSF), ethylene glycol tetraacetic acid, and ethylenediaminetetraacetic acid on both caseinolytic and fibrinogenolytic activities were examined. Electrophoretogram of fibrinogenolytic assays were subjected to densitometric analysis. Results: Proteolytic action of MSL was found to be highly efficient over trypsin I and trypsin II in dose-dependent caseinolytic activity (P < 0.05; specific activity of 1,080 units/mg protein). The Aα and Bβ bands of human fibrinogen were readily cleaved by MSL (for 1 μg crude protein and 30 min of incubation time). Furthermore, MSL cleaved γ subunit in dose- and time-dependent manner. Quantitative correlation of these results was obtained by densitometric analysis. The caseinolytic activity of MSL was inhibited by IAA, PMSF. While, only PMSF inhibited fibrinogenolytic activity. Conclusions: MSL contains proteolytic enzymes belonging to two distinct superfamilies viz., serine protease and cysteine proteases. The fibrinogenolytic activity of MSL is restricted to serine proteases only. The study extrapolates the use of M. spinosa latex from milk curdling to hemostasis.

PDF
Keywords