Optimization of ultrasound-assisted extraction of phenolic compounds from Cimicifugae rhizoma with response surface methodology

Articles

Abstract
Pharmacognosy Magazine,2015,11,44,682-689.
Published:September 2015
Type:Original Article
Authors:
Author(s) affiliations:

Lin Liu1, Bao-Jia Shen2, Dong-Hao Xie1, Bao-Chang Cai2, Kun-Ming Qin2, Hao Cai3
1 Department of Pharmacy, Dahua Hospital, Xuhui District, Shanghai 200237, China
2 Engineering Research Center of Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210029; Nanjing Haichang Chinese Medicine Group Co. Ltd, Nanjing 210061; Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Nanjing 210023, China
3 Engineering Research Center of Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210029; Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Nanjing 210023, China

Abstract:

Background: Cimicifugae rhizoma was a Ranunculaceae herb belonging to the composite family, and the roots of C. rhizoma have been widely used in tradition Chinese medicine. Materials and Methods: Ultrasound-assisted extraction (UAE) of phenolic compounds from C. rhizoma. Caffeic acid (CA), isoferulic acid (IA), ferulic acid (FA), and total phenols were quantified by high-performance liquid chromatography-diode array detection and ultraviolet-visible spectrophotometer. Effects of several experimental parameters, such as ultrasonic power (W), extraction temperature (°C), and ethanol concentration (%) on extraction efficiencies of phenolic compounds from C. rhizoma were evaluated. Results: The results showed that the optimal UAE condition was obtained with ultrasonic power of 377.35 W, extraction temperature of 70°C, and ethanol concentration of 58.37% for total phenols, and ultrasonic power of 318.28 W, extraction temperature of 59.65°C, and ethanol concentration of 64.43% for combination of CA, IA, FA. Conclusions: The experimental values under optimal conditions were in good consistent with the predicted values, which suggested UAE is more efficient for the extraction of phenolic compounds from plant materials.

PDF
Keywords