Metabolic fingerprinting to understand therapeutic effects and mechanisms of silybin on acute liver damage in rat

Articles

Abstract
Pharmacognosy Magazine,2015,11,43,586-593.
Published:July 2015
Type:Original Article
Authors:
Author(s) affiliations:

Qun Liang, Cong Wang, Binbing Li, Ai-hua Zhang
First Affiliated Hospital and School of Pharmacy, Heilongjiang University of Chinese Medicine, Xiangfang District, Harbin 150040, China

Abstract:

Background: Metabolic fingerprinting is a rapid and noninvasive analysis, representing a powerful approach for the characterization of phenotypes and the distinction of specific metabolic states due to environmental alterations. It has become a valuable analytical approach for the characterization of phenotypes and is the rapidly evolving field of the comprehensive measurement of ideally all endogenous metabolites in bio-samples. Silybin has displayed bright prospects in the prevention and therapy of liver injury, and we had conducted a preliminary exploration on the molecular mechanism of the hepatoprotective effects of silybin. Because the knowledge on the metabolic responses of an acute liver damage rat to the silybin is still scarce, metabolic fi ngerprinting can provide relevant information on the intrinsic metabolic adjustments. Materials and Methods: Here, the physiological and metabolic changes in the acute liver damage rat were investigated by performing a metabolic analysis. The phenotypic response was assessed by liquid chromatography/mass spectrometry (LC/MS) combined with pattern recognition approaches such as principal components analysis and partial least squares projection to supervised latent structures and discriminant analysis. Multivariate analysis of the data showed trends in scores plots that were related to the concentration of the silybin. Results: Results indicate 10 ions (7 upregulated and 3 downregulated) as differentiating metabolites. Key observations include perturbations of metabolic pathways linked to glutathione metabolism, tryptophan metabolism, cysteine and methionine metabolism, etc., Overall, this investigation illustrates the power of the LC/MS combined with the pattern recognition methods that can engender new insights into silybin affecting on metabolism pathways of an acute liver damage rat. Conclusion: The present study demonstrates that the combination of metabolic fi ngerprinting with appropriate chemometric analysis is a valuable approach for studying cellular responses to silybin drug and can provide additional insight into the mechanisms.

PDF
Keywords