Optimization of induction, subculture conditions, and growth kinetics of Angelica sinensis (Oliv.) Diels callus

Articles

Abstract
Pharmacognosy Magazine,2015,11,43,574-578.
Published:July 2015
Type:Original Article
Authors:
Author(s) affiliations:

Bing Huang, Lijuan Han, Shaomei Li, Chunyan Yan
Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China

Abstract:

Background: Angelica sinensis (Oliv.) Diels is an important traditional Chinese medicine, and the medicinal position is its root. This perennial herb grows vigorously only in specific areas and the environment. Tissue culture induction of callus and plant regeneration is an important and effective way to obtain large scale cultures of AsinensisObjective: The objective was to optimize the inductive, subculture conditions, and growth kinetics of AsinensisMaterials and Methods: Tissue culture conditions for Asinensis were optimized using leaves and petioles (types I and II) as explants source. Murashige and Skoog (MS) and H media supplemented with 30 g/L sucrose, 7.5 g/L agar, and varying concentrations of plant growth regulators were used for callus induction. In addition, four different basal media supplemented with 1.0 mg/L 2,4 dichlorophenoxy acetic acid (2,4 D), 0.2 mg/L 6 benzyladenine (BA) and 30 g/L sucrose were optimized for callus subculture. Finally, growth kinetics of A. sinensis cultured on different subculture media was investigated based on callus properties, including fresh weight, dry weight, medium pH, callus relative fresh weight growth, callus relative growth rate (CRGR), and sucrose content. Results: MS medium supplemented with 5 mg/L α-naphthaleneacetic acid, 0.5 mg/L BA, 0.7 mg/L 2,4 D, 30 g/L sucrose and 7.5 g/L agar resulted in optimal callus induction in Asinensis while petiole I was found as the best plant organ for callus induction. The B5 medium supplemented with 1.0 mg/L 2,4 D, 0.2 mg/L BA and 30 g/L sucrose displayed the best results in A. sinensis callus subculture assays. Conclusion: The optimized conditions could be one of the most potent methods for large scale tissue culture of Asinensis.

PDF
Keywords