Ethyl acetate extract from marine sponge Hyattella cribriformis exhibit potent anticancer activity by promoting tubulin polymerization as evidenced mitotic arrest and induction of apoptosis

Articles

Abstract
Pharmacognosy Magazine,2015,11,42,345-355.
Published:March 2015
Type:Original Article
Authors:
Author(s) affiliations:

Pazhanimuthu Annamalai1, Malini Thayman2, Sowmiya Rajan1, Lakshmi Sundaram Raman2, Sankar Ramasubbu3, Pachiappan Perumal1
1 Department of Biotechnology, Periyar University, Karuppur, Salem, India
2 Department of Cell and Molecular Biology, Central Research Facility, Sri Ramachandra University, Porur, Chennai, India
3 Department of Discovery Biology, AURA Biotechnologies Private Limited, Uthandi, Chennai, Tamil Nadu, India

Abstract:

Background: Marine sponges are important sources of bioactive compounds. Objective: This study investigated the anticancer properties of Hyattella cribriformis ethyl acetate (EA) fraction in various cancer and normal cell lines. Materials and Methods: anticancer assay was carried out in 15 cell lines to evaluate the anticancer potential of the EA fraction. Impact on cell cycle distribution was determined using flow cytometry. The fraction was investigated for interfering microtubules assembly in both in vitro and cellular assay. Further studies were conducted to determine the fraction induced cell death (apoptosis) using calcein/propidium iodide dual staining, activated caspase-3 and phosphorylation of Bcl-2 protein at Ser70. DNA fragmentation assay was performed to confirm the apoptosis. Results: EA fraction exhibited potent inhibition of cancer cell growth and resulted in 50% growth inhibition (GI 50 ) of 0.27 μg/mL in A673 cell line. Sarcoma (MG-63, Saos-2) and ovarian (SK-OV-3 and OVCAR-3) cancer cell lines also showed superior anticancer activity GI 50 of 1.0 μg/mL. Colon and breast cancer cell lines exhibited moderate GI compare other cancer cell lines and normal human lung fibroblast showed GI 50 of 15.6 μg/mL. EA fraction showed potent G2/M phase arrest in A673 cell line and induced apoptosis at 48 h exposure. EA fraction promoted microtubule polymerization in tubulin polymerization assay and increased level of polymerized tubulin in the HeLa cells. Fraction induced the activation of caspase-3 and phosphorylation of Bcl-2 anti-apoptotic protein. Fraction induced DNA fragmentation in HeLa cells as evidence of apoptosis. Conclusion: Marine sponge H. cribriformis EA fraction exhibited potent anticancer activity through tubulin polymerization and induction of apoptosis.

PDF
Keywords