Rapid, sensitive, and validated UPLC/Q-TOF-MS method for quantitative determination of vasicine in Adhatoda vasica and its in vitro culture

Articles

Abstract
Pharmacognosy Magazine,2014,10,37s,s198-s205.
Published:February 2014
Type:Original Article
Authors:
Author(s) affiliations:

Garg Madhukar1, Ennus Tajuddin Tamboli1, Parveen Rabea2, SH Ansari1, MZ Abdin3, Ahmad Sayeed1
1 Department of Pharmacognosy and Phytochemistry, Bioactive Natural Product Laboratory, Hamdard University, Hamdard Nagar, New Delhi, India
2 Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, India
3 Department of Biotechnology, Faculty of Science, Hamdard University, Hamdard Nagar, New Delhi, India

Abstract:

Background: Adhatoda vasica a perennial herb has been used in Ayurvedic and Unani system of medicines since last 2000 years and has been employed for the treatment of respiratory tract ailments. Objective: To develop and validate new, rapid, and highly sensitive high throughput ultra-performance liquid chromatography/quadrupole-time-of-flight mass-spectrometry (UPLC/Q-TOF-MS) method for the quantitative estimation of vasicine in the leaves and to establish in vitro cultures of Adhatoda vasica for production of vasicine. Materials and Methods: The chromatographic separation was achieved on a Waters ACQUITY UPLC TM BEH C8 (100.0 × 2.1 mm; 1.7 μm) column packing using isocratic mobile phase consisting of acetonitrile: 20 mM ammonium acetate (90:10; v/v) in a multiple reactions monitoring mode using the transitions m/z 189.09 → 171.08 for vasicine. Results: The vasicine was eluted at 2.58 ± 0.05 min and established a dynamic range of linearity over the concentration range of 1-1000 ng/ml (r2 = 0.999 ± 0.0005). The lower limit of detection and quantification was 0.68 and 1.0 ng/ml, respectively. There was no significant difference observed in the content of vasicine (0.92-1.04%w/w) among the eleven samples collected from different locations of India. The in vitro cultures developed showed that addition of extra 28 mM KNO 3 and 100 mM NaCl in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) + benzyladenine (BA) + indole acetic acid (IAA) (1 ppm each) produces faster biomass and higher amount of quinazoline alkaloids. Conclusion: Rapid, efficient, and sensitive UPLC/Q-TOF-MS method was developed for the estimation of vasicine and an efficient protocol for development of in vitro cultures was proposed, which can be used at large scale for industrial production of vasicine using bioreactors.

PDF
Keywords