Cinnamaldehyde, cinnamic acid, and cinnamyl alcohol, the bioactives of Cinnamomum cassia exhibit HDAC8 inhibitory activity: An In vitro and In silico study

Articles

Abstract
Pharmacognosy Magazine,2017,13,51s,s645-s651.
Published:October 2017
Type:Original Article
Authors:
Author(s) affiliations:

Mangesh Patil1, Amit S Choudhari2, Savita Pandita2, Md Ataul Islam3, Prerna Raina2, Ruchika Kaul-Ghanekar2
1NBN Sinhgad Technical Institutes Campus, NBN Sinhgad School of Computer Studies, Pune, Maharashtra, India
2Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra, India
3Department of Chemical Pathology, Faculty of Health Sciences, Tshwane Academic Division of the National Health Laboratory Service, University of Pretoria, Pretoria, South Africa

Abstract:

Background: The altered expression of histone deacetylase family member 8 (HDAC8) has been found to be linked with various cancers, thereby making its selective inhibition a potential strategy in cancer therapy. Recently, plant secondary metabolites, particularly phenolic compounds, have been shown to possess HDAC inhibitory activity. Objective: In the present work, we have evaluated the potential of cinnamaldehyde (CAL), cinnamic acid (CA), and cinnamyl alcohol (CALC) (bioactives of Cinnamomum) as well as aqueous cinnamon extract (ACE), to inhibit HDAC8 activity in vitro and in silicoMaterials and Methods: HDAC8 inhibitory activity of ACE and cinnamon bioactives was determined in vitro using HDAC8 inhibitor screening kit. Trichostatin A (TSA), a well-known anti-cancer agent and HDAC inhibitor, was used as a positive control. In silico studies included molecular descriptor Analysis molecular docking absorption, distribution, metabolism, excretion, and toxicity prediction, density function theory calculation and synthetic accessibility program. Results: Pharmacoinformatics studies implicated that ACE and its Bioactives (CAL, CA, and CALC) exhibited comparable activity with that of TSA. The highest occupied molecular orbitals and lowest unoccupied molecular orbitals along with binding energy of cinnamon bioactives were comparable with that of TSA. Molecular docking results suggested that all the ligands maintained two hydrogen bond interactions within the active site of HDAC8. Finally, the synthetic accessibility values showed that cinnamon bioactives were easy to synthesize compared to TSA. Conclusion: It was evident from both the experimental and computational data that cinnamon bioactives exhibited significant HDAC8 inhibitory activity, thereby suggesting their potential therapeutic implications against cancer.

PDF
Keywords