Wound-healing activity of Zanthoxylum bungeanum maxim seed oil on experimentally burned rats

Articles

Abstract
Pharmacognosy Magazine,2017,13,51,363-371.
Published:July 2017
Type:Original Article
Authors:
Author(s) affiliations:

Xiao-Qiang Li1, Rong Kang2, Jun-Cheng Huo3, Yan-Hua Xie3, Si-Wang Wang3, Wei Cao3
1Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
2Department of Natural Medicine, Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032; Department of Pharmaceutics, School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710032, China
3Department of Natural Medicine, Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China

Abstract:

Background: The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is considered to be rich source of fatty acids, mainly oleic and linoleic acids, and has been used for the treatment of burns in Chinese medicine. Objective: We evaluated the healing efficacy of ZBSO and explored its possible mechanism on scalded rats. Materials and Methods: Sprague-Dawley rat models with deep second-degree burns were set up, and ZBSO (500 and 1000 μl/wound) was topically applied twice daily for 7 days and then once daily until wound healing. The therapeutic effects of ZBSO were evaluated by observing wound closure time, decrustation time, wound-healing ratio, and pathological changes. Collagen type-III, matrix metalloproteinase-2 (MMP-2), MMP-9, phospho-nuclear factor-κB (p-NF-κB) p65, inhibitor of NF-κB subunit α p-IκBα, and inhibitor of NF-κB subunit α (IκBα) expression were determined using Western blotting. Results: The ZBSO-treated group showed a higher wound-healing ratio and shorter decrustation and wound closure times than the untreated group. The topical application of ZBSO increased collagen synthesis as evidenced by an increase in hydroxyproline level and upregulated expression of collagen type-III on days 7, 14, and 21 posttreatment. A reduction in MMP-2 and MMP-9 expressions also confirmed the collagen formation efficacy of ZBSO. Furthermore, there was a significant increase in superoxide dismutase levels and a decrease in malondialdehyde levels in ZBSO-treated wounds. ZBSO also decreased tumor necrosis factor alpha, interleukin-1 (IL-1) β, and IL-6 levels in serum, upregulated IκBα, and downregulated p-NF-κB p65 and p-IκBα expression in vivo, indicating the anti-inflammatory action of ZBSO. Conclusion: ZBSO has significant potential to treat burn wounds by accelerating collagen synthesis and the anti-inflammatory cascade of the healing process.

PDF
Keywords