Background: Calycosin 7-O-β-D glucopyranoside (CG) is a natural isoflavone found in traditional Chinese medicines Astragali Radix (AR). Objective: Calycosin 7-O-β-D glucopyranoside, an isoflavone isolated from AR, has been found to have potent antioxidantive effects. This study was designed to investigate whether CG prevents oxidative stress induced by thioacetamide (TAA). Materials and Methods: BRL-3A cells were pretreated with different concentrations of CG (10, 20, 40 mg/mL) for 12 h and then exposed to 0.18 mol/L TAA for 2 h. The cell viability were examined by 3 [4,5 dimethylthiazol 2 yl] 2,5 diphenyl tetrazolium assay, total antioxidant capacity, malondialdehyde (MDA) and the activity of antioxidant enzymes, including catalase, glutathione peroxidase and superoxide dismutase were determined by microplate method. Reactive oxygen species (ROS) generation was quantified by the 2’,7’ dichlorofluorescin diacetate method. Protein and mRNA expression of CYP2E1 were determined by western blotting and real time PCR. Results: The cell oxidative stress was significantly increased after 2 h of TAA exposure. Pretreatment of BRL 3A cells with CG significantly increased the activities of antioxidant enzymes, scavenged ROS and reduced MDA production. CG decreased the expression of CYP2E1, and ultimately decreased TAA induced BRL 3A cells oxidative stress. Conclusions: Calycosin 7-O-β-D glucopyranoside has a protective effect against TAA induced oxidative stress in BRL 3A cells, and that the underlying mechanism involves in scavenging of ROS and the modulating expression of CYP2E1.