Anti-inflammatory effects of Malus toringoides extract in lipopolysaccharide-induced human umbilical vein endothelial cells

Articles

Abstract
Pharmacognosy Magazine,2021,17,75,518-524.
Published:November 2021
Type:Original Article
Authors:
Author(s) affiliations:

Chengde Fan1, Zhuoma Dongzhi2, Linsha Dong1, Ruiying Yuan3, Jule Wang4, Bin Li1, Shan Huang1
1 Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
2 Department of Medicament, College of Medicine, Tibet University, Lhasa, China; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
3 Department of Medicament, College of Medicine; Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
4 Department of Medicament, College of Medicine, Tibet University, Lhasa, China

Abstract:

Background: Malus toringoides (Rehd.) Hughes is a traditional Tibetan medicine. It demonstrates significant hypoglycemic and hypolipidemic potential. However, the protective effects of M. toringoides extracts on endothelial cells and the mechanisms that underlie their activity have not yet been reported. Objectives: The aim of the study was to explore the anti-inflammatory effects and cellular mechanisms of extracts of M. toringoides (CBTM-E375) in lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs). Materials and Methods: HUVECs were exposed to LPS, and the level of proinflammatory mediators was measured by enzyme-linked immunosorbent assay. Furthermore, the activation of heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) was examined by Western blot and immunofluorescence analysis. Results: CBTM-E375 significantly downregulated the levels of inflammatory mediators and upregulated the expression of HO-1 by modulating Nrf2 translocation in HUVECs. The transfection of HO-1 small interfering RNA into HUVECs actively reversed the effects of CBTM-E375 in suppressing the expression of proinflammatory cytokines. Furthermore, MAPK activation in response to LPS was also blocked by CBTM-E375. Conclusion: CBTM-E375 exerts anti-inflammatory effects, possibly by modulating the translocation of Nrf2 and expression of HO-1, and inhibiting the phosphorylation of MAPK signaling pathway.

PDF
Images
Effects of CBTM-E375 on cell viability. Human umbilical vein endothelial cells were incubated for 48 h with various concentrations of CBTM-E375 (50-800 μg/mL).
Keywords