Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors

Articles

Abstract
Pharmacognosy Magazine,2018,14,53,124-128.
Published:February 2018
Type:Original Article
Authors:
Author(s) affiliations:

Anoop Kumar, Padma Charan Behera, Naresh Kumar Rangra, Suddhasattya Dey, Kamal Kant
Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Abstract:

Background: Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. Objective: This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Materials and Methods: Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Results: Pyrethroids (specifically type 2) such as fenvalerate (−5.534 kcal/mol: CD8), fluvalinate (−4.644 and − 4.431 kcal/mol: CD4 and CD45), and cypermethrin (−3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. Conclusion: The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity.

PDF
Keywords