The natural compound dansameum reduces foam cell formation by downregulating CD36 and peroxisome proliferator-activated receptor-gamma; Expression

Articles

Abstract
Pharmacognosy Magazine,2017,13,52s,s868-s874.
Published:January 2018
Type:Original Article
Authors:
Author(s) affiliations:

Kang-Seo Park1, Sang Hyun Ahn2, Kang Pa Lee3, Sun-Young Park4, Jin Hong Cheon5, Jun-Yong Choi6, Kibong Kim7
1Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
2Department of Anatomy, College of Korean Medicine, Semyung University, Jecheon-si, Chungcheongbuk-do, Republic of Korea
3 Department of Medical Science, School of Medicine, Konkuk University, Seoul, Republic of Korea
4Department of Physiology, College of Korean Medicine, Semyung University, Jecheon-si, Chungcheongbuk-do, Republic of Korea
5Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do, Republic of Korea
6Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do, Republic of Korea
7Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea

Abstract:

Background: Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). Objective: To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. Materials and Methods: The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. Results: We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Conclusion: Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation.

PDF
Keywords