Zerumbone suppresses angiogenesis in HepG2 cells through inhibition of matrix Metalloproteinase-9, vascular endothelial growth factor, and vascular endothelial growth factor receptor expressions

Articles

Abstract
Pharmacognosy Magazine,2017,13,52s,s731-s736.
Published:January 2018
Type:Original Article
Authors:
Author(s) affiliations:

Nozlena Abdul Samad1, Ahmad Bustamam Abdul2, Heshu Sulaiman Rahman3, Abdullah Rasedee4, Tengku Azmi Tengku Ibrahim4, Yeap Swee Keon4
1 UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor; Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
2 UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3 Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani; Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaese, Sulaimani City, Kurdistan Region, Northern Iraq; Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4 UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang; Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Abstract:

Context: Due to increase in the number of patients with impaired immunity, the incidence of liver cancer has increased considerably. Aims: The aim of this study is the investigation the in vitro anticancer effect of zerumbone (ZER) on hepatocellular carcinoma (HCC). Materials and Methods: The anticancer mechanism of ZER was determined by the rat aortic ring, human umbilical vein endothelial cells (HUVECs) proliferation, chorioallantoic membrane, cell migration, and proliferation inhibition assays. Results: Our results showed that ZER reduced tube formation by HUVECs effectively inhibits new blood vessel and tissue matrix formation. Western blot analysis revealed that ZER significantly (P < 0.05) decreased expression of molecular effectors of angiogenesis, the matrix metalloproteinase-9, vascular endothelial growth factor (VEGF), and VEGF receptor proteins. We found that ZER inhibited the proliferation and suppressed migration of HepG2 cell in dose-dependent manner. Statistical Analysis Used: Statistical analyses were performed according to the Statistical Package for Social Science (SPSS) version 17.0. The data were expressed as the mean ± standard deviation and analyzed using a one-way analysis of variance. A P < 0.05 was considered statistically significant. Conclusion: The study for the first time showed that ZER is an inhibitor angiogenesis, tumor growth, and spread, which is suggested to be the mechanisms for its anti-HCC effect.

PDF
Keywords