Chemopreventive agents from Physalis minima function as michael reaction acceptors

Articles

Abstract
Pharmacognosy Magazine,2016,12,46s,s231-s236.
Published:May 2016
Type:Original Article
Authors:
Author(s) affiliations:

Ruizhi Men1, Ning Li1, Chihong Ding2, Yingzhan Tang1, Yachao Xing1, Wanjing Ding2, Zhongjun Ma2
1 School of Traditional Chinese Materia Medica; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
2 Institute of Marine Biology, Ocean College, Zhejiang University, Zijingang Campus, No. 866 Yuhangtang Road, Hangzhou 310058, PR China

Abstract:

Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minimaResults: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively.

PDF
Keywords

Cite This Article

Vancouver Style

Men R, Li N, Ding C, Tang Y, Xing Y, Ding W, et al.. Chemopreventive agents from Physalis minima function as michael reaction acceptors. Pharmacognosy Magazine [Internet]. 20160511th ed. 2016;12(46s):s231-s236. https://www.ncbi.nlm.nih.gov/pubmed/27279713