Evaluation of xanthine oxidase inhibitory potential and In vivo hypouricemic activity of Dimocarpus longan lour. extracts

Articles

Abstract
Pharmacognosy Magazine,2016,12,46s,s206-s212.
Published:May 2016
Type:Original Article
Authors:
Author(s) affiliations:

Shi-Yuan Sheu1, Yuan-Tsung Fu2, Wen-Dar Huang3, Yung-Ann Chen4, Yi-Chih Lei4, Chun-Hsu Yao5, Feng-Lin Hsu6, Tzong-Fu Kuo7
1 School of Medicine, Chung Shan Medical University; Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital; Department of Occupational Therapy, Asia University, Taichung Branch, Taiwan
2 Department of Chinese Medicine, Buddhist Tzu Chi General Hospital; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Taichung Branch, Taiwan
3 Department of Agronomy, National University, Taichung Branch, Taiwan
4 School of Veterinary Medicine, National University, Taichung Branch, Taiwan
5 School of Chinese Medicine, China Medical University; Department of Biomedical Imaging and Radiological Science, China Medical University; Department of Biomedical Informatics, Asia University, Taichung Branch, Taiwan
6 College of Pharmacy, School of Pharmacy, Taipei Medical University; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
7 School of Veterinary Medicine, National University; Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taiwan

Abstract:

Background: Longan is a fruit tree known to contain many phenolic components, which are capable of protecting people from oxidative damage through an anti-inflammatory mechanism. It may be also worthwhile to study the effect on lowering uric acid activity. Materials and Methods: This study investigates the lowering of uric acid using longan extracts, including flowers, pericarps, seeds, leaves, and twigs, on potassium-oxonate-induced hyperuricemia mice and its inhibitory actions against xanthine oxidase (XO) activities. Results: The findings revealed that ethyl acetate fraction of longan extracts exhibited strong XO-inhibitory activity, and the flower extracts (IC50 = 115.8 μg/mL) revealed more potent XO-inhibitory activity to those of pericarps (118.9 μg/mL), twigs (125.3 μg/mL), seeds (262.5 μg/mL), and leaves (331.1 μg/mL) in vitro. In addition, different dosages of longan extract (50–100 mg/kg) were administered to hyperuricemic mice. The lowering effect of longan extracts on uric acid at 75 mg/kg markedly reduced plasma uric acid levels in decreasing order: Flowers (80%) > seeds (72%) > pericarps (64%) > twigs (59%) > leaves (41%), compared with allopurinol (89%). Finally, 10 isolated phytochemicals from longan flowers were then examined in vitro. The results indicated that proanthocyanidin A2 and acetonylgeraniin A significantly inhibited XO activity in vitro. This is the first report providing new insights into the urate-reducing effect of phenolic dimer and hydrolyzable tannin, which can be developed to potential hypouricemic agents.

PDF
Keywords