Cardioprotective and antioxidant influence of aqueous extracts from Sesamum indicum seeds on oxidative stress induced by cadmium in wistar rats

Articles

Abstract
Pharmacognosy Magazine,2016,12,46s,s170-s174.
Published:May 2016
Type:Original Article
Authors:
Author(s) affiliations:

Babatunji Emmanuel Oyinloye1, Basiru Olaitan Ajiboye2, Oluwafemi Adeleke Ojo2, Sarah Onyenibe Nwozo3, Abidemi Paul Kappo4
1 Biotechnology and Structural Biochemistry Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, Republic of South Africa; Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
2 Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
3 Nutritional and Industrial Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 200002, Nigeria
4 Biotechnology and Structural Biochemistry Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, Republic of South Africa

Abstract:

Background: Oxidative stress has been implicated in the pathogenesis of several acute and chronic diseases of the heart as a result of indiscriminate exposure to cardiotoxic heavy metals. The study reported here was designed to evaluate the possible ameliorative effect of aqueous extracts from Sesamum indicum (SI) seeds on oxidative stress induced by cadmium (Cd) in Wistar rats. Materials and Methods: Daily administration of Cd (200 mg/L Cd as CdCl2) in the animals' main drinking water for 21 days led to oxidative stress. Thereafter, the ameliorative effects were assessed by measuring biochemical parameters such as extent of lipid peroxidation (LPO), lipid profile, and enzymatic and nonenzymatic antioxidants, as well as serum aminotransferase activities. Results: Treatment with SI extract elicited notable reduction in serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels as well as concomitant increase in high-density lipoprotein cholesterol. SI extract also reversed the elevations witnessed in serum aminotransferase activities, LPO level, and ameliorated enzymatic and nonenzymatic antioxidant status in the heart of Cd-exposed rats. Conclusion: Thus, SI appears to be an attractive candidate with potential for the novel treatment of cardiotoxicity and management of oxidative stress arising from Cd exposure.

PDF
Keywords