Hybrid analysis (barcode-high resolution melting) for authentication of Thai herbal products, Andrographis paniculata (Burm.f.) Wall.ex Nees

Articles

Abstract
Pharmacognosy Magazine,2016,12,45s,s71-s75.
Published:February 2016
Type:Original Article
Authors:
Author(s) affiliations:

Maslin Osathanunkul1, Chatmongkon Suwannapoom2, Nuttaluck Khamyong1, Danupol Pintakum1, Santisuk Na Lamphun1, Kanokporn Triwitayakorn3, Kitisak Osathanunkul4, Panagiotis Madesis5
1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2 State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
3 Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
4 Department of Computer Science, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
5 Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, Thessaloniki, 57001, Greece

Abstract:

Background: Andrographis paniculata Nees is a medicinal plant with multiple pharmacological properties. It has been used over many centuries as a household remedy. A. paniculata products sold on the markets are in processed forms so it is difficult to authenticate. Therefore buying the herbal products poses a high-risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Materials and Methods: High resolution melting analysis coupled with DNA barcoding (Bar-HRM) was applied to detect adulteration in commercial herbal products. The rbc L barcode was selected to use in primers design for HRM analysis to produce standard melting profile of A. paniculata species. DNA of the tested commercial products was isolated and their melting profiles were then generated and compared with the standard A. paniculataResults: The melting profiles of the rbc L amplicons of the three closely related herbal species (A. paniculataAcanthus ebracteatus and Rhinacanthus nasutus) are clearly separated so that they can be distinguished by the developed method. The method was then used to authenticate commercial herbal products. HRM curves of all 10 samples tested are similar to A. paniculata which indicated that all tested products were contained the correct species as labeled. Conclusion: The method described in this study has been proved to be useful in aiding identification and/or authenticating A. paniculata. This Bar-HRM analysis has allowed us easily to determine the A. paniculata species in herbal products on the markets even they are in processed forms.

PDF
Keywords