Cytotoxic glucosphingolipid from Celtis Africana

Articles

Abstract
Pharmacognosy Magazine,2015,11,42s,s1-s5.
Published:May 2015
Type:Original Article
Authors:
Author(s) affiliations:

Shagufta Perveen1, Areej Mohammad Al-Taweel1, Ghada Ahmed Fawzy2, Azza Muhammed El-Shafae3, Afsar Khan4, Peter Proksch5
1 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 2457, Riyadh 11451, Saudi Arabia
2 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 2457, Riyadh 11451, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
3 Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
4 Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad-22060, Pakistan
5 Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany

Abstract:

Background: Literature survey proved the use of the powdered sun-dried bark and roots of Celtis africana for the treatment of cancer in South Africa. Objective: The aim of this study was to do further isolation work on the ethyl acetate fraction and to investigate the cytotoxic activities of the various fractions and isolated compound. Materials and Methods: Cytotoxicity of petroleum ether, chloroform, ethyl acetate, n-butanol fractions and compound 1 were tested on mouse lymphoma cell line L5178Y using the microculture tetrazolium assay. Results: One new glucosphingolipid 1 was isolated from the aerial parts of C. africana. The structure of the new compound was determined by extensive analysis by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry. The ethyl acetate fraction and compound 1 showed strong cytotoxic activity with an EC 50 value of 8.3 μg/mL and 7.8 μg/mL, respectively, compared with Kahalalide F positive control (6.3 μg/mL). Conclusion: This is the first report of the occurrence of a cytotoxic glucosphingolipid in family Ulmaceae.

PDF
Keywords