Effects of ginsenosides-Rb1 on exercise-induced oxidative stress in forced swimming mice

Articles

Abstract
Pharmacognosy Magazine,2014,10,40,458-463.
Published:September 2014
Type:Original Article
Authors:
Author(s) affiliations:

Bo Qi1, Lan Zhang2, Zhiqun Zhang3, Jiangqiong Ouyang1, Hui Huang1
1 Department of Physical Education, Central South University, Changsha, Hunan 410083, China
2 Department of Sports and Arts, Zhejiang Yuexiu University of Foreign Languages, Shaoxing, Zhejiang 312000, China
3 Physical Education Institute, Xinxiang Polytechnic College, Xinxiang, Henan 453000, China

Abstract:

Background: The fleshy root of Panax ginseng C.A. Meyer (ginseng) is one of the most well-known and valued herbs in traditional Chinese medicine. Ginsenosides are considered mainly responsible for the pharmacological activities of ginseng. The purpose of this study was to investigate the effects of ginsenoside-Rb 1 (G-Rb 1 ) on swimming exercise-induced oxidative stress in male mice. Materials and Methods: A total of 48 animals were randomly divided into four groups, with twelve mice in each group. The first, second and third groups were designed as G-Rb 1 treatment groups, got 25, 50 and 100 mg/kg bodyweight of G-Rb 1 , respectively. The fourth group was designed as the control group, got physiologic saline. The mice were intragastrically administered once daily for 4 weeks. The weight-loaded forced swimming test was conducted on the final day of experimentation. Then the exhaustive swimming time, blood lactate, serum creatine kinase (CK), malondialdehyde (MDA) and antioxidant enzymes in liver of mice were measured. Results: The results showed that G-Rb 1 could prolong the exhaustive swimming time and improve exercise endurance capacity of mice, as well as accelerate the clearance of blood lactate and decrease serum CK activities. Meanwhile, G-Rb 1 could decrease MDA contents and increase superoxide dismutase, catalase, glutathione peroxidase activities in liver of mice. Conclusions: The study suggested that G-Rb 1 possessed protective effects on swimming exercise-induced oxidative stress in mice.

PDF
Keywords