Preservation on calcium homeostasis is involved in mitochondrial protection of Limonium sinense against liver damage in mice

Articles

Abstract
Pharmacognosy Magazine,2010,6,23,191-197.
Published:July 2010
Type:Original Article
Authors:
Author(s) affiliations:

Xin-Hui Tang1, Jin Chen2, Xiao-Lan Yang3, Li-Fang Yan1, Jing Gao4
1Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, 50 Kaifang Road, Yancheng, 224002, China; School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
2School of Life Science, Nanjing University, 22 Hankou Road, Nanjing, 210009, China; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
3Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, 50 Kaifang Road, Yancheng, 224002, China
4School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China

Abstract:

Mechanisms underlying the mitochondrial protection of Limonium sinense extracts (LSE) was studied in lipopolysaccharide and D-galactosamine (LPS/D-GalN) intoxicated mice. It was found that increased activities of serum aspartate aminotransferase and alanine aminotransferase induced by LPS/D-GalN were significantly inhibited by pretreatment with LSE. The obvious disruption of membrane potential, intramitochondrial Ca 2+ overload and suppression in mitochondrial Ca 2+ -ATPase activity induced by LPS/D-GalN were significantly blocked by pretreatment with LSE. It was concluded that mechanisms underlying protection of LSE against liver mitochondria damage might be related to the preservation on mitochondrial Ca 2+ homeostasis through the preservation on mitochondrial Ca 2+ -ATPase activity.

PDF
Keywords