Investigation of antihyperglycaemic activity of banana (Musa sp. Var. Nanjangud rasa bale) flower in normal and diabetic rats

Articles

Abstract
Pharmacognosy Magazine,2015,13,51s,s417-s423.
Published:October 2017
Type:Original Article
Authors:
Author(s) affiliations:

Ramith Ramu1, Prithvi S Shirahatti1, SP Dhanabal2, Farhan Zameer3, BL Dhananjaya4, MN Nagendra Prasad5
1Department of Biotechnology, Sri Dharmasthala Manjunatheshwara College of Post Graduate Centre, Ujire, Dakshina Kannada, Karnataka, India
2Department of Pharmacognosy & Phytopharmacy, JSS College of Pharmacy, “Rocklands” Post Box No.20, Udhagamandalam, Tamil Nadu, India
3Department of Studies in Biotechnology, Microbiology and Biochemistry, Mahajana Life Science Research Centre, Pooja Bhagavat Memorial Mahajana PG Centre, Mysore, Karnataka, India
4Toxinology/Toxicology and Drug Discovery Unit, Centre for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara, Karnataka, India
5Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Institution Camp, Manasagangothri, Mysore, Karnataka, India

Abstract:

Background: The vital enzymes of starch digestion and absorption are intestinal α-glucosidases and their inhibition improves postprandial hyperglycaemia, constituting an effective mode of therapy in diabetes. Objectives: The present study was designed to assess the inhibitory potential of ethanol extract of banana flower (EF) on mammalian α-glucosidases and its pharmacological effects on postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. Materials and Methods: EF was evaluated for its inhibitory potential and mode of inhibition on mammalian α-glucosidases. Further, the role of EF and its constituents Umbelliferone (C1) and Lupeol (C2) on glucose uptake using isolated rat hemi-diaphragm and insulinotropic activity using RINm5F (rat insulinoma) cell lines were determined. The phytocomponents in EF were also evaluated using GC-MS. Results: EF illustrated a dose-dependent inhibition for rat intestinal sucrase, maltase and p-nitrophenyl-α-D-glucopyranoside (pNPG) hydrolysis (IC50 values: 18.76±0.22, 25.54±0.10 and 76.42±1.12 μg/ml, respectively) and the mode of inhibition was non-competitive with low Ki values. Oral administration (100-200 mg/kg b.wt.) of EF significantly improved the maltose/glucose-induced postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. EF, C1 and C2 exhibited stimulation of glucose uptake and a dose-dependent glucose-induced insulin secretion at both 4.5 and 16.7 mM glucose concentrations. Further, GC-MS analysis revealed significant levels of steroids (25.61%), diazoprogesterone (21.31%), sesquiterpene (11.78%) and other phytocomponents. Conclusion: EF inhibited α-glucosidases besides promoting glucose uptake and insulin secretion, resulting in antihyperglycaemic effect determining EF as a potent anti-diabetic agent.

PDF
Keywords